We have studied the impact of achiral substituents on the chiral supramolecular architectures of diketopyrrolo[3,4-c]pyrrole-1,2,3-1H-triazole (DPP) dyes. We decorated the same chiral DPP motif with substituent groups on the nitrogen atoms of the lactam moiety: the hydrophobic n-octyl alkyl chain, the hydrophilic tri(ethylene glycol) (TEG) chain and the thermo-cleavable tert-butoxycarbonyl (t-Boc) carbamate group. In spite of having identical conjugated chromophore and chiral appendages, in aggregated form the three dyes displayed profoundly different optical, chiroptical, electrochemical and thermal features. ECD measurements revealed differences in the aggregation modes, which would be inaccessible by most other techniques. We found strong chiroptical features, which would have major implications in the context of chiral organic opto-electronics and in the development of other highly innovative technological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202300291DOI Listing

Publication Analysis

Top Keywords

chiral
5
chiral diketopyrrolo[34-c]pyrrole-123-1h-triazole
4
diketopyrrolo[34-c]pyrrole-123-1h-triazole dyes
4
dyes highly
4
highly tuneable
4
tuneable properties
4
properties solution
4
solution thin
4
thin films
4
films studied
4

Similar Publications

Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.

View Article and Find Full Text PDF

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

Homochiral layered indium phosphonates: solvent modulation of morphology and chiral discrimination adsorption.

Dalton Trans

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Assembling chiral coordination polymers into nano/microflower structures may improve their performance in applications such as chiral recognition and separation. In this study, we chose a chiral metal phosphonate system, , In(NO)/-, -pempH [pempH = (1-phenylethylamino)methylphosphonic acid], and carried out systematic work on the self-assembly of this system in different alcohol/HO mixed solvents under solvothermal conditions. Enantiomeric compounds -, -[In(pempH)(μ-OH)(HO)](NO) (R-, S-1) were obtained showing dense layered structures, but their morphologies varied with alcohol solvent.

View Article and Find Full Text PDF

Chirality of sub-nanometer nanowires/nanobelts.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.

Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.

View Article and Find Full Text PDF

Background And Aims: Dengue is a mosquito-borne viral disease that frequently causes seasonal outbreaks in Bangladesh, particularly during the monsoon months from June to September. Recent outbreaks have shown significant shifts in clinical manifestations, including changes in the timeframe and serotype mixing. This study focused on the clinical and hematological profiles of patients during the 2022 outbreak, which was notably severe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!