The scarcity of fresh water resources has become increasingly serious in recent years, posing threats to the survival of mankind. The ability of the animals and plants in arid areas to collect water from moisture and fog has drawn attention worldwide. Inspired by the synergistic fog harvesting mode of natural organisms with superhydrophilic and superhydrophobic patterning, a composite membrane with a concave-convex morphology and hybrid wettability was prepared aiming at efficient fog harvesting. The hybrid wettability surface was obtained by chemically modifying the superhydrophilic PAN substrate with 1,1,2,2-perfluorooctyltrichlorosilane using iron mesh as the mask. The porous PAN substrate was prepared by the non-solvent-induced phase separation (NIPS) method. Fog harvesting is a three-step process: condensation, coalescence, and rapid transportation of water droplets. The area and ratio of the hydrophilic/hydrophobic regions were tuned by adjusting the mesh number of the iron meshes. Under the optimal condition, the fog harvesting efficiencies of 40.3 and 74.2 mg·cm·min were obtained when the fog yields were 0.05 and 0.1 L·min, respectively. The present work provides an alternative strategy for addressing the shortage of fresh water resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c03432 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.
View Article and Find Full Text PDFSmall
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China.
Innovative design strategies of fog harvesting devices (FHDs) demonstrate promising remedy for water crisis in arid areas. 1D FHDs ensure unimpeded wind circulation and can be manufactured more cost-effectively for extensive regions. Inspired by cactus thorns, desert beetles, and spider silk, two metal organic frameworks (MOFs) functionalized Cu wires with opposite wettability are double-twisted by a mechanical twisting machine, forming 1D double-spiral Cu wires with alternating superhydrophobic/superhydrophilic dual-MOF patterns.
View Article and Find Full Text PDFChem Soc Rev
January 2025
School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.
The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, National Institute of Technology (NIT), J&K, Srinagar, India, 190006.
Our study addresses the pressing global freshwater scarcity crisis by engineering advanced liquid-entrapped nanosurfaces optimized for highly efficient atmospheric water harvesting (AWH). Through a synergistic approach integrating carbon fiber paper (CFP), hydrothermally synthesized nanoneedles (NNs), and silicone oil liquid entrapment (LE) within NNs, we achieved remarkable improvements in water collection efficiency. While CFP captures fog effectively during AWH, it faces challenges with water-pinning effects, mitigated by NNs' improved droplet-spreading properties, leading to a notable 50% increase in harvesting efficiency.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, Girona 17003, Catalonia, Spain. Electronic address:
Atmospheric water harvesting (AWH) is one of the most efficient, sustainable, cost-effective, and promising techniques for addressing world's water scarcity. Over 4.3 billion people around the world struggle to access clean, abundant, and safe drinking water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!