Riboswitches are conserved structural ribonucleic acid (RNA) sensors that are mainly found to regulate a large number of genes/operons in bacteria. Presently, >50 bacterial riboswitch classes have been discovered, but only the thiamine pyrophosphate riboswitch class is detected in a few eukaryotes like fungi, plants and algae. One of the most important challenges in riboswitch research is to discover existing riboswitch classes in eukaryotes and to understand the evolution of bacterial riboswitches. However, traditional search methods for riboswitch detection have failed to detect eukaryotic riboswitches besides just one class and any distant structural homologs of riboswitches. We developed a novel approach based on inverse RNA folding that attempts to find sequences that match the shape of the target structure with minimal sequence conservation based on key nucleotides that interact directly with the ligand. Then, to support our matched candidates, we expanded the results into a covariance model representing similar sequences preserving the structure. Our method transforms a structure-based search into a sequence-based search that considers the conservation of secondary structure shape and ligand-binding residues. This method enables us to identify a potential structural candidate in fungi that could be the distant homolog of bacterial purine riboswitches. Further, phylogenomic analysis and evolutionary distribution of this structural candidate indicate that the most likely point of origin of this structural candidate in these organisms is associated with the loss of traditional purine riboswitches. The computational approach could be applicable to other domains and problems in RNA research.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbad110DOI Listing

Publication Analysis

Top Keywords

structural candidate
12
computational approach
8
bacterial riboswitches
8
based inverse
8
inverse rna
8
rna folding
8
riboswitch classes
8
purine riboswitches
8
riboswitches
7
structural
5

Similar Publications

Psoralidin acts as a dual protease inhibitor against PL and M of SARS-CoV-2.

FEBS J

January 2025

Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India.

The emergence of new coronavirus variants and concerns about vaccine effectiveness against these novel variants emphasize the need for broad-spectrum therapeutics targeting conserved coronaviral non-structural proteins. Accordingly, a virtual library of 178 putative inhibitors targeting SARS-CoV-2 Papain-like protease (PL) was compiled through a systematic review of published literature and subsequently screened using molecular docking. Selected hits were analyzed for protease inhibitory activities, binding strength, and antiviral activities against HCoV229E-based surrogate system and subsequently against SARS-CoV-2 for validation.

View Article and Find Full Text PDF

Chain Length Does Matter: Development of High-Potency QS-21-Based Vaccine Adjuvants.

J Med Chem

January 2025

State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China.

Adjuvants are crucial agents that enhance the immunogenicity of vaccines, with QS-21 being particularly noteworthy for its potent immunostimulatory properties. QS-21, a saponin-based vaccine adjuvant isolated from the bark of , has garnered significant attention. However, its application as vaccine adjuvant is limited due to its scarcity, complex chemical synthesis, and inherent toxicity.

View Article and Find Full Text PDF

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.

View Article and Find Full Text PDF

An Ultrastable Integrated Anode with ∼95 wt.% SiO via In Situ Electrode-Scale Conformal Coating.

ACS Nano

January 2025

Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.

SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.

View Article and Find Full Text PDF

Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!