Building stimulus-responsive units in the hydrogel coatings remains challenging for film sensors consisting of alternated layers of inert substrates and hydrogel coatings. An interesting film sensor with a carboxymethyl starch-based hydrogel coating was developed here. The cross-linking networks of carboxymethyl starch play the roles of structure-constructing units and stimulus-controlling units simultaneously, endowing the coatings with thermal sensing and strain sensing capabilities. The dynamic cross-links formed via the boronic ester bonds are temperature-sensitive, releasing or consuming additional acid ions with temperature alteration, and also as primary networks give the hydrogel strength and stretchability with the assistance of semi-penetrated polyacrylamide chains. Therefore, as-prepared flexible film sensors can be used to detect the periodic changes of human temperature and small-scale motion with multiple working modes, discriminating the physical states related to human health. Moreover, this kind of starch-based coating is degradable in a strongly alkaline solution and the inert substrate layer can protect the skin from erosion caused by direct hydrogel-skin contact, and thereby the film sensor is human- and environmentally friendly. This work also proposes a strategy of building temperature-sensitive units in the film sensor via regulating the chemical networks, instead of tuning physical structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c01918 | DOI Listing |
Commun Eng
January 2025
The School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China.
Limited by the adsorption and diffusion rate of water molecules, traditional humidity sensors, such as those based on polymer electrolytes, porous ceramics, and metal oxides, typically have long response times, which hinder their application in monitoring transient humidity changes. Here we present an ultrafast humidity sensor with a millisecond-level response. The sensor is prepared by assembling monolayer graphene oxide quantum dots on silica microspheres using a simple electrostatic self-assembly technique.
View Article and Find Full Text PDFNat Commun
January 2025
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China.
The coupling of photovoltaic and pyroelectric effects is a common phenomenon in ferroelectric films and often results in coupling enhancements. Although the coupling effects of a variety of ferroelectric films have been examined in terms of improved performance, they have yet to be quantitatively ranked and assessed. Here, by taking the charge coupling factor, the Yang's charge, and output energy as metrics to evaluate the coupling performance, a methodology is developed for evaluating the performance of a range ferroelectric films when the pyroelectric and photovoltaic effects are coupled.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea.
Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli.
View Article and Find Full Text PDFChemSusChem
January 2025
Brandenburgische Technische Universitat Cottbus-Senftenberg, Angewandte Physik und Halbleiterspektroskopie, Konrad-Zuse-Str. 1, 03046, Cottbus, GERMANY.
Ultrathin atomic layer deposited ceria films (< 20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10%. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China.
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!