With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CORR). Here, we review the recent progress in electrochemical CORR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO reduction to single-carbon (C) and multi-carbon (C) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CORR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CORR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr00484h | DOI Listing |
ACS Nano
January 2025
Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Information Photonics Technology, School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China.
Nonlinear optics, a critical branch of modern optics, presents unique potential in the study of two-dimensional (2D) magnetic materials. These materials, characterized by their ultra-thin geometry, long-range magnetic order, and diverse electronic properties, serve as an exceptional platform for exploring nonlinear optical effects. Under strong light fields, 2D magnetic materials exhibit significant nonlinear optical responses, enabling advancements in novel optoelectronic devices.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, Changchun 130022, China.
As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
SrTiO, a prominent member of the Ruddlesden-Popper (RP) perovskite family, has garnered significant interest in photocatalysis, primarily owing to its distinctive two-dimensional (2D) layered structure. In this review, we provide an insightful and concise summary of the intrinsic properties of SrTiO, focusing on the electronic, optical, and structural characteristics that render it a promising candidate for photocatalytic applications. Moreover, we delve into the innovative strategies that have been developed to optimize the structural attributes of SrTiO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!