Counterion-Dependent Material Properties of Phosphorylated Nanocellulose.

Biomacromolecules

Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Published: April 2023

The material properties of cellulose nanofibers (CNFs) are governed by the surface chemical structure of the fibers. The chemical structure-property relationships for monovalent carboxylated CNFs are well understood. Here, we report the basic sheet properties of divalent phosphorylated CNFs with different phosphorus contents and counterion types. All examined sheet properties, including conditioned and wet tensile properties, electrical resistivities, and fire-retardant properties of the CNF sheets, were greatly enhanced by the counterion exchange from the initial sodium ions to calcium or aluminum ions. The phosphorus content had significant influences only on the conditioned tensile and fire-retardant properties. In comparison to CNF sheets with monovalent carboxy groups, the CNF sheets with divalent phosphate groups were superior in terms of their wet tensile properties and fire-retardant properties. Our research shows that the combination of the divalent phosphate introduction and counterion exchange provides a successful strategy for the practical application of CNF sheets as antistatic materials and flexible substrates for electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c00066DOI Listing

Publication Analysis

Top Keywords

cnf sheets
16
fire-retardant properties
12
properties
9
material properties
8
sheet properties
8
wet tensile
8
tensile properties
8
counterion exchange
8
divalent phosphate
8
counterion-dependent material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!