Microplastic pollution is an emerging threat for marine and terrestrial ecosystems, which has raised global concerns about its implications for human health. Mounting evidence has shown that the gut microbiota plays a key role in human health and diseases. The gut bacteria could be disturbed by many environmental factors, including the microplastic particles. However, the size effect of polystyrene microplastics on mycobiome, as well as gut functional metagenome has not been well studied. In this study, we performed ITS sequencing to explore the size effect of polystyrene microplastics on the fungal composition, in combination with the shotgun metagenomics sequencing to reveal the size effects of polystyrene on the functional metagenome. We found that polystyrene microplastic particles with 0.05-0.1 µm diameter showed greater impact on the bacterial and fungal composition of gut microbiota as well as the metabolic pathways than the polystyrene microplastic particles with 9-10 µm diameter. Our results suggested that size-depended effects should not be ignored in the health risk assessment of microplastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.114737 | DOI Listing |
Front Pharmacol
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
Introduction: Cadmium (Cd) and polystyrene microplastics (PS-MPs), two ubiquitous environmental contaminants, produce unique synergistic toxicity when co-existing. Key unanswered questions include specific effects on liver function and potential mechanisms.
Methods: In this study, C57BL/6 mice and AML12 cells were used to establish and models to elucidate the effects of combined exposure to PS-MPs and Cd on the liver and their mechanisms.
Sci Rep
January 2025
Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Nano- and microplastics (NMPs) have become a serious global environmental threat that causes damage to mammalian organs. In this work, we investigated the potential molecular mechanism underlying the development of liver fibrosis induced by long-term exposure to three different sized polystyrene (PS)-NMPs (80 nm, 0.5 µm and 5 µm) in mice.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.
The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil.
Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
The co-occurrence of microplastics (MPs) and nanoplastics (NPs) with polychlorinated biphenyls (PCBs) is an emerging environmental concern. Wetland plants, with their unique anaerobic-aerobic environments, offer a promising approach for PCB removal. However, the impact of MPs and NPs on PCBs dynamics in constructed wetlands is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!