GeSn compounds have made many interesting contributions in photodetectors (PDs) over the last ten years, as they have a detection limit in the NIR and mid-IR region. Sn incorporation in Ge alters the cut off wavelength. In the present article, p-i-n structures based on GeSn junctions were fabricated to serve as PDs. Arsine (As) is incorporated to develop n-GeSn compounds a metal induced crystallization (MIC) process followed by i-GeSn on p-Si wafers. The impact of As and Sn doping on the strain characteristics of GeSn has been studied with high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy analyses. The direct transitions and tuning of their band energies have been investigated using diffuse reflectance UV-vis spectroscopy and photoluminescence (PL). The barrier height and spectral responsivity have been controlled with incorporation of As. Variation of As incorporation into GeSn Compounds shifted the Raman peak and hence affected the strain in the Ge network. UV-vis spectroscopy showed that the direct transition energies are lowered as the Ge-As bonding increases as illustrated in Raman spectroscopy investigations. PL and UV-vis spectroscopy of annealed heterostructures at 500 °C showed that there are many transition peaks from the UV to the NIR region as result of oxygen vacancies in the Ge network. The calculated diode parameters showed that As incorporation leads to an increase of the height barrier and thus dark current. Spectral response measurements show that the prepared heterojunctions have spectral responses in near UV and NIR regions that gives them opportunities in UV and NIR photodetection-applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025945 | PMC |
http://dx.doi.org/10.1039/d3ra00805c | DOI Listing |
Mikrochim Acta
January 2025
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China.
A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Physics and Chemistry, Faculty of Education, Alexandria University Egypt.
A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, School of Advanced Engineering, UPES Dehradun, Dehradun, Uttarakhand, India.
Anions play a crucial role in various environmental, chemical, and biological processes. Among various anions, the production of perchlorate (ClO ) ion is expected to rise in upcoming years, and thus, an efficient method for the detection of perchlorate ion is highly desirable. In this effort, a pyridyl-benzimidazole-based luminescent probe (RSB1) containing two N-H donor sites has been synthesized for selective detection of perchlorate ion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!