Environmental heterogeneity is an important driver of ecological communities. Here, we assessed the effects of local and landscape spatial environmental heterogeneity on ant community structure in temperate seminatural upland grasslands of Central Germany. We surveyed 33 grassland sites representing a gradient in elevation and landscape composition. Local environmental heterogeneity was measured in terms of variability of temperature and moisture within and between grasslands sites. Grassland management type (pasture vs. meadows) was additionally included as a local environmental heterogeneity measure. The complexity of habitat types in the surroundings of grassland sites was used as a measure of landscape environmental heterogeneity. As descriptors of ant community structure, we considered species composition in terms of nest density, community evenness, and functional response traits. We found that extensively grazed pastures and within-site heterogeneity in soil moisture at local scale, and a high diversity of land cover types at the landscape scale affected ant species composition by promoting higher nest densities of some species. Ant community evenness was high in wetter grasslands with low within-site variability in soil moisture and surrounded by a less diverse landscape. Fourth-corner models revealed that ant community structure response to environmental heterogeneity was mediated mainly by worker size, colony size, and life history traits related with colony reproduction and foundation. We discuss how within-site local variability in soil moisture and low-intensity grazing promote ant species densities and highlight the role of habitat temperature and humidity affecting community evenness. We hypothesize that a higher diversity of land cover types in a forest-dominated landscape buffers less favorable environmental conditions for ant species establishment and dispersal between grasslands. We conclude that spatial environmental heterogeneity at local and landscape scale plays an important role as deterministic force in filtering ant species and, along with neutral processes (e.g., stochastic colonization), in shaping ant community structure in temperate seminatural upland grasslands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025078PMC
http://dx.doi.org/10.1002/ece3.9889DOI Listing

Publication Analysis

Top Keywords

environmental heterogeneity
32
ant community
24
community structure
20
ant species
16
local landscape
12
structure temperate
12
temperate seminatural
12
seminatural upland
12
upland grasslands
12
community evenness
12

Similar Publications

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

Escalating climate and anthropogenic disturbances draw into question how stable large-scale patterns in biological diversity are in the Anthropocene. Here, we analyse how patterns of reef fish diversity have changed from 1995 to 2022 by examining local diversity and species dissimilarity along a large latitudinal gradient of the Great Barrier Reef and to what extent this correlates with changes in coral cover and coral composition. We find that reef fish species richness followed the expected latitudinal diversity pattern (i.

View Article and Find Full Text PDF

Robust collection and processing for label-free single voxel proteomics.

Nat Commun

January 2025

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics.

View Article and Find Full Text PDF

Floodplain forests drive fruit-eating fish diversity at the Amazon Basin-scale.

Proc Natl Acad Sci U S A

January 2025

Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

Background: Coccidioidomycosis, caused by inhalation of spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!