Cadmium (Cd) contamination of soils is an environmental concern, as cadmium harms food crops and can therefore impact human health. The use of combinations of biochar (seeded with ) and (as an intercrop) has the potential to reduce the mobilization of Cd from soil mustard plants (). Mustard plants are grown as a food and oil production crop that is consumed worldwide. However, this plant has the property of hyperaccumulation; thus, it bioaccumulates Cd in its tissues, which in turn, if eaten, can become part of the human food chain. Hence, reducing Cd bioaccumulation in mustard plants is crucial to making these plants a reliable and safe source of food for consumption. To improve soil sorption capacity and immobilization efficiency, biochar (in the form of wheat husk) was mixed with and intercropped (using with mustard plants for further investigation. Sampling was performed at an early growth stage (i.e., at 30 days) and at maturity (i.e., at 60 days) to determine the impact of Cd on a plant's morphophysiological attributes. Data were analyzed in two ways: first by analysis of variance (ANOVA) and then by the Tukey's honestly significant difference (HSD) test. The statistical analysis concluded that combinations effectively improved plant traits by 65%-90% in the early growth stage and by 70%-90% in the maturity stage. The T6 treatment combination [i.e., biochar + + (BC + RL + VR)] provided the most effective results in terms of growth, biomass, pod yield, and pigmentation content. In addition, this combination reduced the translocation of Cd in mustard plants by 70%-95%. The combination of BC + RL + VR effectively reduced Cd contamination of mustard tissue and provided a suitable growing environment for the plants. A post-harvesting soil analysis using X-ray diffraction (XRD) found that Cd was undetectable in soil. This provides clear confirmation that these approaches can lead to Cd soil remediation. Moreover, this study provided insight into the responses of different morphophysiological attributes of mustard plants to Cd stress and could aid in developing Cd stress tolerance in mustard plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025393 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1139136 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania.
The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two species, oilseed rape (, ), and black mustard (, ).
View Article and Find Full Text PDFMolecules
December 2024
Department of Microbiology and Biomonitoring, University of Agriculture, al. A. Mickiewicza 21, 31-120 Krakow, Poland.
Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant response, such as malondialdehyde, ascorbic acid, proline, total phenolics, and total flavonoids, as well as the content of elements, including macroelements (K, Mg, Na, Ca, P, and S) and heavy metals (Cd, Cu, Zn, Pb, Ni, Mn, and Fe) in broad bean plants. These plants were grown in field conditions as the main protected plant alongside a mixture of three insectary plants at different proportions of the individual components.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China.
Rape () is an important oilseed crop widely cultivated worldwide. Due to its relatively short evolutionary and domestication history, its intra-species genetic diversity is limited. Radish (), belonging to a different genus but the same family as , possesses an abundance of excellent gene resources.
View Article and Find Full Text PDFFoods
December 2024
Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland.
Honey is a complex natural nutrient with well-established therapeutic properties recognized in traditional medicine. The purpose of the current work was to compare, in vitro, the bioactive compounds, antioxidants, and antimicrobial properties of 37 honey samples collected from the western region of Algeria and to identify the best sample for potential therapeutic purposes. Estimation of bioactive compounds was carried out by determining the total phenolic and flavonoid contents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!