A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Markerless motion tracking to quantify behavioral changes during robot-assisted gait training: A validation study. | LitMetric

Measuring kinematic behavior during robot-assisted gait therapy requires either laborious set up of a marker-based motion capture system or relies on the internal sensors of devices that may not cover all relevant degrees of freedom. This presents a major barrier for the adoption of kinematic measurements in the normal clinical schedule. However, to advance the field of robot-assisted therapy many insights could be gained from evaluating patient behavior during regular therapies. For this reason, we recently developed and validated a method for extracting kinematics from recordings of a low-cost RGB-D sensor, which relies on a virtual 3D body model to estimate the patient's body shape and pose in each frame. The present study aimed to evaluate the robustness of the method to the presence of a lower limb exoskeleton. 10 healthy children without gait impairment walked on a treadmill with and without wearing the exoskeleton to evaluate the estimated body shape, and 8 custom stickers were placed on the body to evaluate the accuracy of estimated poses. We found that the shape is generally robust to wearing the exoskeleton, and systematic pose tracking errors were around 5 mm. Therefore, the method can be a valuable measurement tool for the clinical evaluation, e.g., to measure compensatory movements of the trunk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025461PMC
http://dx.doi.org/10.3389/frobt.2023.1155542DOI Listing

Publication Analysis

Top Keywords

robot-assisted gait
8
body shape
8
wearing exoskeleton
8
markerless motion
4
motion tracking
4
tracking quantify
4
quantify behavioral
4
behavioral changes
4
changes robot-assisted
4
gait training
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!