Purpose: Ultrasound image acquisition has the advantages of being low cost, rapid, and non-invasive, and it does not produce radiation. Currently, ultrasound is widely used in the diagnosis of liver tumors. However, owing to the complex presentation and diverse features of benign and malignant liver tumors, accurate diagnosis of liver tumors using ultrasound is difficult even for experienced radiologists. In recent years, artificial intelligence-assisted diagnosis has proven to provide effective support to radiologists. However, there is room for further improvement in the existing ultrasound artificial intelligence diagnostic model of liver tumor. First, the image diagnostic model may not fully consider relevant clinical data in the decision-making process. Second, owing to the difficulty in collecting biopsy pathology and physician-labeled ultrasound data of liver tumors, training datasets are usually small, and commonly used large neural networks tend to overfit on small datasets, which seriously affects the generalization of the model.

Methods: In this study, we propose a deep learning-assisted diagnosis model called USC-ENet, which integrates B-mode ultrasound features of liver tumors and clinical data of patients, and we design a small neural network specifically for small-scale medical images combined with an attention mechanism.

Results And Conclusion: Real data from 542 patients with liver tumors (N = 2168 images) are used during model training and validation. Experiments show that USC-ENet can achieve a good classification effect (area under the curve = 0.956, sensitivity = 0.915, and specificity = 0.880) after small-scale data training, and it has certain interpretability, showing good potential for clinical adoption. In conclusion, our model provides not only a reliable second opinion for radiologists but also a reference for junior radiologists who lack clinical experience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025174PMC
http://dx.doi.org/10.1007/s13755-023-00217-yDOI Listing

Publication Analysis

Top Keywords

liver tumors
28
diagnosis liver
12
clinical data
12
liver
8
b-mode ultrasound
8
diagnostic model
8
tumors
7
ultrasound
7
model
6
data
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!