Significance: Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler shifts, and the speed-distribution of blood. It has been demonstrated how to account for these effects in laser Doppler flowmetry (LDF) using inverse Monte Carlo (MC) algorithms. This allows for a speed-resolved perfusion measure in absolute units %RBC × mm/s, improving the physiological interpretation of the data. Until now, this has been limited to a single-point LDF technique but recent advances in multi-exposure LSCI (MELSCI) enable the analysis in an imaging modality.

Aim: To present a method for speed-resolved perfusion imaging in absolute units %RBC × mm/s, computed from multi-exposure speckle contrast images.

Approach: An artificial neural network (ANN) was trained on a large simulated dataset of multi-exposure contrast values and corresponding speed-resolved perfusion. The dataset was generated using MC simulations of photon transport in randomized skin models covering a wide range of physiologically relevant geometrical and optical tissue properties. The ANN was evaluated on in vivo data sets captured during an occlusion provocation.

Results: Speed-resolved perfusion was estimated in the three speed intervals 0 to , 1 to , and , with relative errors 9.8%, 12%, and 19%, respectively. The perfusion had a linear response to changes in both blood tissue fraction and blood flow speed and was less affected by tissue properties compared with single-exposure LSCI. The image quality was subjectively higher compared with LSCI, revealing previously unseen macro- and microvascular structures.

Conclusions: The ANN, trained on modeled data, calculates speed-resolved perfusion in absolute units from multi-exposure speckle contrast. This method facilitates the physiological interpretation of measurements using MELSCI and may increase the clinical impact of the technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027009PMC
http://dx.doi.org/10.1117/1.JBO.28.3.036007DOI Listing

Publication Analysis

Top Keywords

speed-resolved perfusion
24
speckle contrast
16
absolute units
12
perfusion imaging
8
laser speckle
8
contrast imaging
8
single-exposure lsci
8
units %rbc
8
%rbc mm/s
8
physiological interpretation
8

Similar Publications

Sex and age-related day-to-day variability in the skin microcirculation during post-occlusive reactive hyperemia.

Microvasc Res

January 2025

Primary Health Care Center, Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. Electronic address:

Introduction: Little is known about the day-to-day variability of different skin microcirculation parameters, and how this variability is influenced by age and sex. The aim was to examine the day-to-day variability of microcirculatory parameters in relation to age and sex.

Methods: The cutaneous microcirculation was measured using a fiber optic probe integrating laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) to measure oxygen saturation, red blood cell (RBC) tissue fraction, speed-resolved and conventional perfusion.

View Article and Find Full Text PDF

Objective: To evaluate microvascular function in women with previous hypertensive disorders of pregnancy (HDP).

Design: Retrospective population-based cohort study.

Setting: Linköping, Sweden.

View Article and Find Full Text PDF

Workload and sex effects in comprehensive assessment of cutaneous microcirculation.

Microvasc Res

July 2023

Department of Health, Medicine and Caring Sciences, Division of Community Medicine, Linköping University, Linköping, Sweden. Electronic address:

Introduction: Workload and sex-related differences have been proposed as factors of importance when evaluating the microcirculation. Simultaneous assessments with diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF) enable a comprehensive evaluation of the microcirculation. The aim of the study was to compare the response between sexes in the microcirculatory parameters red blood cell (RBC) tissue fraction, RBC oxygen saturation, average vessel diameter, and speed-resolved perfusion during baseline, cycling, and recovery, respectively.

View Article and Find Full Text PDF

Significance: Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g.

View Article and Find Full Text PDF

Background: In this study, we assessed the ability of the EPOS system (Perimed AB, Järfälla, Stockholm, Sweden) to detect differences in tissue perfusion between healthy volunteers and patients with peripheral arterial disease (PAD) with different severity of disease.

Methods: This single-center prospective pilot study included 10 healthy volunteers and 20 patients with PAD scheduled for endovascular therapy (EVT). EPOS measurements were performed at rest at 32 °C and 44 °C, followed by transcutaneous oxygen pressure (TcPo) measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!