To explore the possible mechanisms of cholestasis induced by Polygoni Multiflori Radix (PM). Low and high doses of water extract of PM were given to mice by gavage for 8 weeks. The serum biochemical indexes of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyltransferase (GGT) alkaline phosphatase (ALP) and so on were detected in the second, fourth, sixth, and eighth weeks after administration. At the end of the eighth week of administration, the bile acid metabolic profiles of liver and bile were screened by high-performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-QQQ-MS/MS). Liver pathological changes were observed by hematoxylin and eosin staining. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA transcription of the target genes and Western blotting (WB) was used to the detect target protein expression. Biochemical tests results showed the values of ALP and GGT were two and three times greater than the normal values respectively, and the value of R was less than 2. Histopathology also showed that PM caused lymphocyte infiltration, a small amount of hepatocyte necrosis and nuclear fragmentation in mouse liver. The proliferation of bile duct epithelial cells was observed in the high group. These results indicated that PM may lead to cholestatic liver injury. HPLC-QQQ-MS/MS analysis with the multivariate statistical analysis revealed significant alterations of individual bile acids in liver and gallbladder as compared to those of the control group. RT-qPCR showed that the transcription of , , , , , and were downregulated and that of , , and was significantly upregulated in the treatment group. WB demonstrated that PM also markedly downregulated the protein expression of FXR, BSEP, and MDR2, and upregulated CYP7A1. PM inhibited the expression of FXR, which reduced the expression of MDR2 and BSEP, leading to the obstruction of bile acids outflow, and increased the expression of CYP7A1, resulting in an increase of intrahepatic bile acid synthesis, which can lead to cholestasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025474PMC
http://dx.doi.org/10.3389/fphar.2023.1099935DOI Listing

Publication Analysis

Top Keywords

bile acid
12
polygoni multiflori
8
multiflori radix
8
protein expression
8
bile acids
8
expression fxr
8
bile
7
liver
5
expression
5
radix interferes
4

Similar Publications

Mepiquat is a contaminant produced in thermal-processed food. It can induce spleen and liver injury. However, the mechanism that mepiquat induced hepatotoxicity remains unclear.

View Article and Find Full Text PDF

Systemic bile acid homeostasis plays an important role in human health. In this study, a physiologically based kinetic (PBK) model that includes microbial bile acid deconjugation and intestinal bile acid reuptake via the apical sodium-dependent bile acid transporter (ASBT) was applied to predict the systemic plasma bile acid concentrations in human upon oral treatment with the antibiotic tobramycin. Tobramycin was previously shown to inhibit intestinal deconjugation and reuptake of bile acids and to affect bile acid homeostasis upon oral exposure of rats.

View Article and Find Full Text PDF

Gut Microbiome and Bile Acid Interactions: Mechanistic Implications for Cholangiocarcinoma Development, Immune Resistance, and Therapy.

Am J Pathol

December 2024

Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia. Electronic address:

Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis, which means a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome, which was shown to lead to enterohepatic recirculation and an increase of toxic secondary bile acids.

View Article and Find Full Text PDF

Role of Milk Intake in Modulating Serum Lipid Profiles and Gut Metabolites.

Metabolites

December 2024

Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.

Background/objectives: Milk is one of the main sources of nutrition in people's daily diet, but the fat in milk raises health concerns in consumers. Here, we aimed to elucidate the impact of Buffalo milk and Holstein cow milk consumption on blood lipid health through metabolomics analysis.

Methods: Golden hamsters were administered Murrah Buffalo milk (BM) or Holstein cow milk (HM), and the body weight and serum lipid indicators were tested and recorded.

View Article and Find Full Text PDF

: This systematic review evaluates the effectiveness of fecal microbiota transplantation (FMT) in treating infection (CDI) in mouse models using a metabolomics-based approach. : A comprehensive search was conducted in three databases (PubMed, Scopus, Google Scholar) from 10 April 2024 to 17 June 2024. Out of the 460 research studies reviewed and subjected to exclusion criteria, only 5 studies met all the inclusion criteria and were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!