Extreme Enhanced Curie Temperature and Perpendicular Exchange Bias in Freestanding Ferromagnetic Superlattices.

ACS Appl Mater Interfaces

Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.

Published: April 2023

Most recently, the freestanding of an epitaxial single-crystal oxide has been greatly developed to its fundamental concerns and the possibility of integration with metal, two-dimensional, and organic materials for more promising functionalities. In an artificial ferromagnetic oxide heterostructure and superlattice, the release of the substrate constraint can induce a reasonable transformation of the magnetic structure because the change of the lattice field occurs. In this study, we have comprehensively investigated the evolution of magnetic properties of (LaCaMnO/SrRuO) [(LCMO/SRO)] ferromagnetic superlattices while they are epitaxially on SrTiO and freestanding. It is found that the Curie temperature and the perpendicular exchange bias of the freestanding superlattices exhibit extreme sensitivity to the interface number and the thickness of LCMO and SRO, which can maximumly reach ∼293 K and ∼1150 Oe. These enhanced and bulk-beyond magnetic behaviors originate from the interfacial magnetic transition from ferromagnetic to antiferromagnetic via the charge reconstruction with the assistance of strain. Our study provides not only a reference for designing a high-performance flexible ferromagnetic architectural superlattice but also a deep understanding of the interfacial effect in freestanding ferromagnetic heterostructures benefiting flexible spintronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c22715DOI Listing

Publication Analysis

Top Keywords

curie temperature
8
temperature perpendicular
8
perpendicular exchange
8
exchange bias
8
bias freestanding
8
freestanding ferromagnetic
8
ferromagnetic superlattices
8
ferromagnetic
6
freestanding
5
extreme enhanced
4

Similar Publications

Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-objective Bayesian optimization to design compositions with predicted high values of saturation magnetization, Curie temperature, and Vickers hardness. Experimental validation was conducted on two promising compositions synthesized using three different methods: arc melting, ball milling followed by spark plasma sintering (SPS), and chemical synthesis followed by SPS.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

The European catfish (Silurus glanis) is an important species with high economic value, and its growing demand has led to intensive farming practices for it. However, this species is increasingly challenged by parasitic infections, particularly from a specific gill monopisthocotylan parasite called Thaparocleidus vistulensis. To establish effective management strategies, it is crucial to comprehend the fundamental environmental variables that could influence the reproductive and survival behavior of T.

View Article and Find Full Text PDF

Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas.

Nanotechnology

January 2025

Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.

Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.

View Article and Find Full Text PDF

Alloying two-dimensional VSiN to realize an ideal half-metal towards spintronic applications.

Phys Chem Chem Phys

January 2025

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.

Modulating the electronic properties of VSiN with high Curie temperature to realize an ideal half-metal is appealing towards spintronic applications. Here, by using first-principles calculations, we propose alloying the VSiN monolayer via substitutive doping of transition metal atoms (Sc-Ni, Y-Mo) at the V site. We find that the transition metal atom (except the Ni atom) doped VSiN systems have dynamical and thermal stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!