A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Three-dimensional visualization of neural networks inside bone by Osteo-DISCO protocol and alteration of bone remodeling by surgical nerve ablation. | LitMetric

AI Article Synopsis

  • Bone is a major organ system in humans that helps maintain overall body balance and interacts with other organs; however, the specific mechanisms of how nerves inside bone regulate this process are not fully understood.
  • Researchers developed a new technique called Osteo-DISCO to visualize the complex 3D structure of nerves and blood vessels in murine (mouse) bones, revealing unique nerve entry points in long bones.
  • Their findings showed that cutting these nerves reduced bone formation and healing, but administering calcitonin gene-related peptide (CGRP) from sensory nerves could counteract this bone loss and boost the activity of bone-forming cells (osteoblasts).

Article Abstract

Bone is one of the largest organ systems in humans and is considered to regulate whole-body homeostasis in cooperation with other organs. We have previously reported that a sympathetic or sensory nervous system inside bone regulates bone homeostasis. However, the detailed regulatory mechanism, including the distribution of nerves inside bone, remains unknown. Although a two-dimensional histological analysis has been widely used to evaluate the structure of nerves or blood vessels, the actual structure is more complex, suggesting that it should be evaluated three-dimensionally. Here, we established a novel bone tissue clearing technique (Osteo-DISCO) for murine bones which enabled us to visualize the detailed distribution of nerves or blood vessels inside bone. Interestingly, we found that there is a specific nerve entry site in each long bone and that surgical ablation of the specific nerve fibers entering bone tissue led to decreased bone formation and impaired bone regeneration. Furthermore, we revealed that the administration of calcitonin gene-related peptide (CGRP), which is primarily released from sensory nerves, suppressed the bone loss caused by surgical nerve ablation. An in vitro study also indicated that CGRP directly promotes osteoblast activity, suggesting that sensory nerves inside bone can regulate osteogenesis via the secretion of CGRP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033912PMC
http://dx.doi.org/10.1038/s41598-023-30492-4DOI Listing

Publication Analysis

Top Keywords

inside bone
20
bone
14
surgical nerve
8
nerve ablation
8
distribution nerves
8
nerves inside
8
nerves blood
8
blood vessels
8
bone tissue
8
specific nerve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!