The ectoparasitoid wasp Theocolax elegans is a cosmopolitan and generalist pteromalid parasitoid of several major storage insect pests, and can effectively suppress a host population in warehouses. However, little molecular information about this wasp is currently available. In this study, we assembled the genome of T. elegans using PacBio long-read sequencing, Illumina sequencing, and Hi-C methods. The genome assembly is 662.73 Mb in length with contig and scaffold N50 values of 1.15 Mb and 88.8 Mb, respectively. The genome contains 56.4% repeat sequences and 23,212 protein-coding genes were annotated. Phylogenomic analyses revealed that T. elegans diverged from the lineage leading to subfamily Pteromalinae (Nasonia vitripennis and Pteromalus puparum) approximately 110.5 million years ago. We identified 130 significantly expanded gene families, 34 contracted families, 248 fast-evolving genes, and 365 positively selected genes in T. elegans. Additionally, 260 olfactory receptors and 285 venom proteins were identified. This genome assembly provides valuable genetic bases for future investigations on evolution, molecular biology and application of T. elegans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033727 | PMC |
http://dx.doi.org/10.1038/s41597-023-02067-5 | DOI Listing |
Sci Adv
January 2025
Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL 60208, USA.
In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.
View Article and Find Full Text PDFNicotine Tob Res
January 2025
Department of Population Health Sciences, University of Leicester, Leicester, UK.
Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.
Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.
Microb Genom
January 2025
Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!