Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis.

Plant J

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

Published: June 2023

Hydrogen sulfide (H S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H S to enhance abiotic stress resistance. However, the role of DCD-mediated H S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16198DOI Listing

Publication Analysis

Top Keywords

osmotic stress
28
root growth
24
growth inhibition
12
auxin homeostasis
12
osmotic
10
stress
9
hydrogen sulfide
8
alleviates osmotic
8
inhibition promoting
8
auxin
8

Similar Publications

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

The Gene Enhances the Cold Resistance of .

Plants (Basel)

January 2025

College of Life Sciences, Shihezi University, Shihezi 832000, China.

Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear () is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!