We study low-salt, binary aqueous suspensions of charged colloidal spheres of size ratio Γ = 0.57, number densities below the eutectic number density n, and number fractions of p = 1.00-0.40. The typical phase obtained by solidification from a homogeneous shear-melt is a substitutional alloy with a body centered cubic structure. In strictly gas-tight vials, the polycrystalline solid is stable against melting and further phase transformation for extended times. For comparison, we also prepare the same samples by slow, mechanically undisturbed deionization in commercial slit cells. These cells feature a complex but well reproducible sequence of global and local gradients in salt concentration, number density, and composition as induced by successive deionization, phoretic transport, and differential settling of the components, respectively. Moreover, they provide an extended bottom surface suitable for heterogeneous nucleation of the β-phase. We give a detailed qualitative characterization of the crystallization processes using imaging and optical microscopy. By contrast to the bulk samples, the initial alloy formation is not volume-filling, and we now observe also α- and β-phases with low solubility of the odd component. In addition to the initial homogeneous nucleation route, the interplay of gradients opens various further crystallization and transformation pathways leading to a great diversity of microstructures. Upon a subsequent increase in salt concentration, the crystals melt again. Wall-based, pebble-shaped β-phase crystals and facetted α-crystals melt last. Our observations suggest that the substitutional alloys formed in bulk experiments by homogeneous nucleation and subsequent growth are mechanically stable in the absence of solid-fluid interfaces but thermodynamically metastable.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0140949DOI Listing

Publication Analysis

Top Keywords

charged colloidal
8
colloidal spheres
8
number density
8
salt concentration
8
homogeneous nucleation
8
microstructural diversity
4
nucleation
4
diversity nucleation
4
nucleation paths
4
paths phase
4

Similar Publications

Comparison of microplastics heteroaggregation with MoS and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.

View Article and Find Full Text PDF

Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.

View Article and Find Full Text PDF

Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:

A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.

View Article and Find Full Text PDF

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!