The molecular basis and downstream immune consequences of mycobacteria-host cell interactions.

FEMS Microbiol Rev

Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France.

Published: March 2023

Pathogenic mycobacteria gain entry to their hosts by inhalation or ingestion where they adhere to different cell types and are subsequently internalized by professional phagocytic cells, such as macrophages or dendritic cells. Multiple pathogen-associated molecular patterns present on the mycobacterial surface are recognized by and interact with a diverse panel of phagocytic pattern recognition receptors, representing the first step of the infection process. This review summarizes the current knowledge on the numerous host cell receptors and their associated mycobacterial ligands or adhesins. It further discusses the downstream molecular and cellular events resulting from the engagement of the various receptor-mediated pathways, leading to either intracellular survival of mycobacteria or to activation of host immune defenses. The content presented herein on adhesins and host receptors may serve as a resource for those developing novel therapeutic approaches, e.g. in the design of antiadhesin molecules to prevent bacterial attachment and infection. The collection of mycobacterial surface molecules highlighted in this review may also provide potential new therapeutic targets, diagnostic markers, or vaccine candidates to combat these notoriously challenging and persistent pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsre/fuad009DOI Listing

Publication Analysis

Top Keywords

mycobacterial surface
8
molecular basis
4
basis downstream
4
downstream immune
4
immune consequences
4
consequences mycobacteria-host
4
mycobacteria-host cell
4
cell interactions
4
interactions pathogenic
4
pathogenic mycobacteria
4

Similar Publications

Mycobacteria such as the causative agent of tuberculosis, , encode over 100 bioinformatically predicted lipoproteins. Despite the importance of these post-translationally modified proteins for mycobacterial survival, many remain experimentally unconfirmed. Here we characterized metabolic incorporation of diverse fatty acid analogues as a facile method of adding chemical groups that enable downstream applications such as detection, crosslinking and enrichment, of not only lipid-modified proteins, but also their protein interactors.

View Article and Find Full Text PDF

Trans-nasal brain delivery of anti-TB drugs by methyl-β-cyclodextrin microparticles show efficient mycobacterial clearance from central nervous system.

J Control Release

December 2024

Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Central nervous system tuberculosis (CNS-TB) is the most severe extra-pulmonary manifestation of tuberculosis (TB), facing significant challenges due to the limited penetration of anti-TB drugs (ATDs) across the blood-brain barrier (BBB) and their insufficient concentrations at the site of infection. This study aimed to enhance the efficacy of ATDs by encapsulating them in methyl-β-cyclodextrin (M-β-CD) microparticles (ATD-MP) using spray drying, intended for intranasal delivery to manage CNS-TB. M-β-CD microparticles loaded with isoniazid (INH) and rifampicin (RIF) exhibited spherical shapes with slightly deflated surfaces and particle sizes of 6.

View Article and Find Full Text PDF

Purpose: To evaluate and compare the mycobacterial load using a mobile laminar airflow (LAF) device in an IVI-dedicated outpatient clean room (OCR) without ventilation systems and in a hospital-based operating theatre (HOT).

Methods: This case-control study was conducted in 2 different settings: OCR and HOT during a series of intravitreal injections (IVIs). The Air Microbial analysis was performed using a Surface Air System instrument at three different moments during the IVI sessions in both settings: at the operative site (OS), four meters from the OS (DOS) and in the disinfection room (DR).

View Article and Find Full Text PDF

Tuberculosis is one of the deadliest infectious diseases and continues to be a major health risk in many parts of the world. Even today, the century-old Bacillus Calmette-Guerin (BCG) vaccine is the only formulation on the market and is ineffective for several sections of the global population responsible for transmission. In the search for antigens that can mount a robust immune response, we have reported the recombinant expression and purification of two novel membrane proteins, the Cation transporter protein V (CtpV) and the Mycobacterial copper transporter B (MctB) present on the membrane surface of .

View Article and Find Full Text PDF

Novel Populations of Under Hypoxia and Starvation: Some Insights on Cell Viability and Morphological Changes.

Microorganisms

November 2024

Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico.

The general features of the shift to a dormant state in mycobacterial species include several phenotypic changes, reduced metabolic activities, and increased resistance to host and environmental stress conditions. In this study, we aimed to provide novel insights into the viability state and morphological changes in dormant that contribute to its long-term survival under starvation or hypoxia. To this end, we conducted assays to evaluate cell viability, morphological changes and gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!