β-Carotene induces UCP1-independent thermogenesis via ATP-consuming futile cycles in 3T3-L1 white adipocytes.

Arch Biochem Biophys

Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea. Electronic address:

Published: May 2023

The activation of brown fat and induction of beige adipocytes, so-called non-shivering thermogenesis, is emerging as a promising target for therapeutic intervention in obesity management. Our previous report demonstrated that β-carotene (BC) induces beige adipocytes to increase UCP1-dependent thermogenic activity. However, the UCP1-independent thermogenic effect of BC on adipose tissues remains unexplored. In this study, we examined the effects of BC on UCP1-independent thermogenic activity with a focus on the ATP-consuming futile cycles in 3T3-L1 adipocytes. BC increased intracellular calcium levels and stimulated the expression of calcium cycling-related proteins, including sarcoendoplasmic reticulum Ca-ATPase (SERCA) 2b, ryanodine receptor 2 (RyR2), voltage-dependent anion channel (VDAC), mitochondrial calcium uniporter (MCU), and Ca/calmodulin-dependent protein kinase 2 (CaMK2) in 3T3-L1 white adipocytes. In addition, BC stimulated thermogenesis by activating the creatine metabolism-related thermogenic pathway. Moreover, BC activated β-carotene oxygenase 1 (BCO1), which efficiently cleaved BC to retinal and consequently converted to its transcriptionally active form retinoic acid. These BC conversion products also exhibited thermogenic effects comparable to a similar level of BC. The mechanistic study revealed that retinal exhibited thermogenic activity independently of retinoic acid and retinoic acid-mediated thermogenesis was resulted partly from conversion of retinal. Moreover, BC activated α1-AR and UCP1-independent thermogenic effectors independently of UCP1 expression. In conclusion, the thermogenic response to BC and its conversion products in 3T3-L1 white adipocytes involves two interacting pathways, one mediated via β3-adrenergic receptors (β3-AR) and cyclic adenosine monophosphate (cAMP) and the other via α1-AR and increases in cytosolic Ca levels activated by calcium regulatory proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2023.109581DOI Listing

Publication Analysis

Top Keywords

3t3-l1 white
12
white adipocytes
12
thermogenic activity
12
ucp1-independent thermogenic
12
β-carotene induces
8
atp-consuming futile
8
futile cycles
8
cycles 3t3-l1
8
beige adipocytes
8
thermogenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!