Prostate and ovarian cancers affect the male and female reproductive organs and are among the most common cancers in developing countries. Previous studies have demonstrated that cancer cells have a high rate of aerobic glycolysis that is present in nearly all invasive human cancers and persists even under normoxic conditions. Aerobic glycolysis has been correlated with chemotherapeutic resistance and tumor aggressiveness. These data suggest that mitochondrial dysfunction may confer a significant proliferative advantage during the somatic evolution of cancer. In this study we investigated the effect of direct mitochondria transplantation on cancer cell proliferation and chemotherapeutic sensitivity in prostate and ovarian cancer models, both in vitro and in vivo. Our results show that the transplantation of viable, respiration competent mitochondria has no effect on cancer cell proliferation but significantly decreases migration and alters cell cycle checkpoints. Our results further demonstrate that mitochondrial transplantation significantly increases chemotherapeutic sensitivity, providing similar apoptotic levels with low-dose chemotherapy as that achieved with high-dose chemotherapy. These results suggest that mitochondria transplantation provides a novel approach for early prostate and ovarian cancer therapy, significantly increasing chemotherapeutic sensitivity in in vitro and in vivo murine models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.114524DOI Listing

Publication Analysis

Top Keywords

prostate ovarian
16
ovarian cancer
12
vitro vivo
12
chemotherapeutic sensitivity
12
mitochondrial transplantation
8
cancer cells
8
aerobic glycolysis
8
mitochondria transplantation
8
cancer cell
8
cell proliferation
8

Similar Publications

Trace element zinc metabolism and its relation to tumors.

Front Endocrinol (Lausanne)

December 2024

Department of Urology, Kunming Children's Hospital, Kunming, Yunnan, China.

Zinc is an essential trace element in the human body, playing a crucial role in cellular metabolism.Dysregulation of zinc homeostasis can lead to abnormal cellular metabolism, contributing to diseases and closely related to tumor development. Adequate zinc intake can maintain zinc homeostasis in the body and support normal cellular metabolism.

View Article and Find Full Text PDF

The current comprehensive study showcases a meticulous synthesis of novel class of α-benzilmonoxime thiocarbohydrazide (BMOTC) derivatives, and manifesting their multifaceted potential as antibacterial, antifungal, and anticancer agents. The synthesis of target compounds was performed in three phases using literature methods. In the first step, benzilmonoxime is synthesized using benzil and hydroxyl amine hydrochloride, followed by benzilmonoxime imine using thiocarbohydrazide.

View Article and Find Full Text PDF
Article Synopsis
  • A study analyzed 26,544 single nucleotide polymorphisms (SNPs) in 291 FRGs and identified 661 SNPs linked to overall survival (OS) in NSCLC patients, later validating these findings in a separate patient group.
  • Two SNPs, FER rs7716388 A>G and SULF1 rs11785839 G>C, were found to be significantly associated with improved survival rates, suggesting that these genetic variants could serve as progn
View Article and Find Full Text PDF

NSC-3852 synergistically enhances the cytotoxicity of olaparib in oral squamous cell carcinoma.

Biochem Biophys Res Commun

December 2024

Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan. Electronic address:

The PARP inhibitor olaparib is an anti-cancer agent based on synthetic lethality that targets poly (ADP-ribose) polymerases. It is used as a therapeutic agent for breast, ovarian, pancreatic, and prostate cancers carrying BRCA1/2 mutations that cause deficiency in homologous recombination. In recent years, acquired resistance to PARP inhibitors has become a clinical problem in PARP inhibitor-treated patients.

View Article and Find Full Text PDF

Associations between vitamin D biochemical status and cancer may be modified by vitamin D binding protein isoforms which are encoded by GC (group-specific component). We examined interactions between serum 25-hydroxyvitamin D [25(OH)D], the Gc isoforms Gc1-1, Gc1-2, and Gc2-2, and cancer risk within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial cohort based on 3,795 cases and 3,856 controls. Multivariable-adjusted logistic regression models estimated odds ratios (ORs) and 95% confidence intervals (CIs) of cancer risk according to 25(OH)D quantiles, stratified by Gc isoform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!