Interleukin-17 is involved in neuropathic pain and spinal synapse plasticity on mice.

J Neuroimmunol

Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China. Electronic address:

Published: April 2023

Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 μg/10 μL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 μg/10 μL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2023.578068DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
16
il-17
10
spinal
9
pain spinal
8
spinal synapse
8
synapse plasticity
8
spinal dorsal
8
il-17a mutant
8
mutant mice
8
c-fiber evoked
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!