The objective of this study was to evaluate the chemical composition and antifungal activity of free and encapsulated Cinnamomum cassia essential oil (EO) against Penicillium crustosum, Alternaria alternata, and Aspergillus flavus, and the aroma persistence in maize flour. Trans-cinnamaldehyde (TC) was identified as the major compound (86 %) in the C. cassia EO. The EO was encapsulated by spray-dryer with 45.26 % efficiency using gum arabic (GA) and maltodextrin (MD) in a ratio of 1:1 (m/m). C. cassia EO showed antifungal activity against A. alternata, A. flavus, and P. crustosum, with a minimum inhibitory concentration (MIC) of 0.5 % for both free and standard TC, and 5 % for the encapsulated EO. Fungal growth inhibition was evaluated under exposition to vapors at different concentrations of C. cassia EO and TC standard, with MIC of 6 % and 8 % against P. crustosum, 4 % and 1 % A. alternata, and 4 % A. flavus, respectively. The sensory analysis results of the free and encapsulated C. cassia EO in maize flour showed a significant difference between the treated samples in relation to the standard sample (p < 0.05). The sample with free EO has high aroma intensity persistence, while the samples treated with encapsulated EO were evaluated as being closer to the standard sample. The results suggest that the encapsulated C. cassia EOs can be used as natural alternatives to control fungi in maize flour.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2023.110178DOI Listing

Publication Analysis

Top Keywords

antifungal activity
12
free encapsulated
12
aroma persistence
8
encapsulated cinnamomum
8
cinnamomum cassia
8
cassia essential
8
essential oil
8
maize flour
8
cassia
6
encapsulated
5

Similar Publications

Tinea blepharociliaris is a rare dermatophyte infection affecting the eyelashes and eyelids, often misdiagnosed as blepharitis, eczema, or bacterial infection, leading to ineffective treatments and recurrent symptoms. We report a case of a 10-year-old girl with erythematous plaques and fine scaling on the eyelids and eyelashes, initially suspected to have facial tinea or contact dermatitis. Direct mycological examination confirmed the presence of fungal filaments and spores, with culture identifying as the causative organism.

View Article and Find Full Text PDF

Screening and identification of two novel phosphate-solubilizing strains and their role in enhancing phosphorus uptake in rice.

Front Microbiol

January 2025

Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.

Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.

View Article and Find Full Text PDF

The antifungal targets of the new fungicide -(naphthalen-1-yl)-phenazine-1-carboxamide (NNPCN) are still incomplete, limiting its application. To identify potential new targets of NNPCN and facilitate target hunting, a suite of techniques was employed to conduct experiments on . Nine potential targets were identified, exhibiting strong binding affinity to NNPCN, as indicated by binding free energies below -100.

View Article and Find Full Text PDF

Using Pickering emulsion (PE) as the carrier of active compounds in bio-based coatings constitutes a highly promising research domain. This study focused on creating a food-grade, biocompatible, and antibacterial PE to coat fresh fruits and vegetables, extending their shelf life. Hollow zein/soluble soybean polysaccharide nanoparticles loaded with thymol (H-ZSH/T) were produced using NaHCO as a sacrificial template to stabilize PE.

View Article and Find Full Text PDF

Background: Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models.

Methods: The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!