We explore the interplay between nematicity (spontaneous breaking of the sixfold rotational symmetry), superconductivity, and non-Fermi liquid behavior in partially flat-band (PFB) models on the triangular lattice. A key result is that the nematicity (Pomeranchuk instability), which is driven by many-body effect and stronger in flat-band systems, enhances superconducting transition temperature in a systematic manner on thedome. There, a plausiblesx2+y2-dx2-y2-dxy-wave symmetry, in place of the conventionaldx2-y2-wave, governs the nematicity-enhanced pairing with a sharp rise in thedome on the filling axis. When the sixfold symmetry is spontaneously broken, the pairing interaction is shown to become stronger with more compact pairs in real space than when the symmetry is enforced. These are accompanied by a non-Fermi character of electrons in the PFBs with many-body interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/acc6afDOI Listing

Publication Analysis

Top Keywords

non-fermi liquid
8
liquid behavior
8
nematicity-enhanced superconductivity
4
superconductivity systems
4
systems non-fermi
4
behavior explore
4
explore interplay
4
interplay nematicity
4
nematicity spontaneous
4
spontaneous breaking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!