Tunable zero-energy Dirac and Luttinger nodes in a two-dimensional topological superconductor.

J Phys Condens Matter

Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, United States of America.

Published: April 2023

Cooper pairing in ultrathin films of topological insulators, induced intrinsically or by proximity effect, can produce an energetically favorable spin-triplet superconducting state. The spin-orbit coupling acts as an SU(2) gauge field and stimulates the formation of a spin-current vortex lattice in this superconducting state. Here we study the Bogoliubov quasiparticles in such a state and find that the quasiparticle spectrum consists of a number of Dirac nodes pinned to zero energy by the particle-hole symmetry. Some nodes are 'accidental' and move through the first Brillouin zone along high-symmetry directions as the order parameter magnitude or the strength of the spin-orbit coupling are varied. At special parameter values, nodes forming neutral quadruplets merge and become gapped out, temporarily producing a quadratic band-touching spectrum. All these features are tunable by controlling the order parameter magnitude via a gate voltage in a heterostructure device. In addition to analyzing the spectrum at the mean-field level, we briefly discuss a few experimental signatures of this spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/acc6b0DOI Listing

Publication Analysis

Top Keywords

superconducting state
8
spin-orbit coupling
8
order parameter
8
parameter magnitude
8
tunable zero-energy
4
zero-energy dirac
4
dirac luttinger
4
nodes
4
luttinger nodes
4
nodes two-dimensional
4

Similar Publications

Stripe charge order and its interaction with Majorana bound states in 2M-WS topological superconductors.

Natl Sci Rev

February 2025

State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.

To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.

View Article and Find Full Text PDF

Topological Bardeen-Cooper-Schrieffer theory of superconducting quantum rings.

Eur Phys J B

January 2025

Department of Physics "A. Pontremoli", University of Milan, Via Celoria 16, 20133 Milan, Italy.

Abstract: Quantum rings have emerged as a playground for quantum mechanics and topological physics, with promising technological applications. Experimentally realizable quantum rings, albeit at the scale of a few nanometers, are 3D nanostructures. Surprisingly, no theories exist for the topology of the Fermi sea of quantum rings, and a microscopic theory of superconductivity in nanorings is also missing.

View Article and Find Full Text PDF

Single Na- and K-Ion-Conducting Sulfonated -NH-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.

Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated -NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.

View Article and Find Full Text PDF

Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement.

Biomed Opt Express

January 2025

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.

Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.

View Article and Find Full Text PDF

Emergent superconductivity driven by Van Hove singularity in a Janus MoPS monolayer.

Phys Chem Chem Phys

January 2025

School of Physics and Electronics, Hunan University, Changsha 410082, China.

Two-dimensional (2D) Janus structures with the breaking of out-of-plane mirror symmetry can induce many interesting physical phenomena, and have attracted widespread attention. Herein, we propose a MoPS monolayer with mirror asymmetry, identified by first-principles structural search calculations, which demonstrates high thermodynamic and dynamic stability. Our findings reveal that Mo 4d-orbitals dominate the metallicity, significantly enhancing the density of states near the Fermi level due to Van Hove singularities (VHSs), leading to the existence of phonon-mediated superconductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!