Multipotent stromal cells are considered attractive sources for cell therapy and tissue engineering. Despite numerous experimental and clinical studies, broad application of stromal cell therapeutics is not yet emerging. A major challenge is the functional diversity of available cell sources. Here, we investigated the regenerative potential of clinically relevant human stromal cells from bone marrow (BMSCs), white adipose tissue, and umbilical cord compared with mature chondrocytes and skin fibroblasts in vitro and in vivo. Although all stromal cell types could express transcription factors related to endochondral ossification, only BMSCs formed cartilage discs in vitro that fully regenerated critical-size femoral defects after transplantation into mice. We identified cell type-specific epigenetic landscapes as the underlying molecular mechanism controlling transcriptional stromal differentiation networks. Binding sites of commonly expressed transcription factors in the enhancer and promoter regions of ossification-related genes, including Runt and bZIP families, were accessible only in BMSCs but not in extraskeletal stromal cells. This suggests an epigenetically predetermined differentiation potential depending on cell origin that allows common transcription factors to trigger distinct organ-specific transcriptional programs, facilitating forward selection of regeneration-competent cell sources. Last, we demonstrate that viable human BMSCs initiated defect healing through the secretion of osteopontin and contributed to transient mineralized bone hard callus formation after transplantation into immunodeficient mice, which was eventually replaced by murine recipient bone during final tissue remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.abm7477 | DOI Listing |
Methods Mol Biol
December 2024
Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.
Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate.
View Article and Find Full Text PDFRegen Med
December 2024
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Aims: This phase I trial assessed the safety and potential efficacy of monthly 3 dose intravenous infusion of allogeneic bone marrow-derived clonal mesenchymal stromal cells (BM-cMSCs) in refractory rheumatoid arthritis (RA) patients over 24 weeks.
Patients & Methods: Six patients with refractory RA received BM-cMSC infusions at one-month intervals over a 24-week period. Safety outcomes included adverse events (AEs) and serious adverse events (SAEs).
ACS Omega
December 2024
Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere FI-33520, Finland.
While bioactive glasses (BaGs) have been studied mainly for bone applications, studies have also shown their potential for soft tissue engineering. Incorporating therapeutic ions, such as lithium (Li), strontium (Sr), and boron (B) into the BaGs, has been found to promote angiogenesis and wound healing. However, a systematic study on the impact of Li, Sr, B, and the other ions in the BaGs, has not been conducted on a wide range of cells.
View Article and Find Full Text PDFBackground: Loss of stromal interaction molecule 1 (STIM1) expression in smooth muscle cells protects against ischemia-reperfusion (I/R) injury. Whether and how decreased STIM1 expression in cardiomyocytes (CM) impacts cardiac remodeling in response to I/R injury remains unknown.
Objective: To examine mechanisms by which decreased CM-STIM1 expression in the adult heart modulates cardiac function before and after I/R injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!