Photochromic materials are widely used to achieve fluorescence photoswitching. Understanding the energy transfer processes occurring in these systems would be an advantage for their use and better optimization of their properties. In this scope, we studied a diarylethene-perylenebisimide (DAE-PBI) dyad that presents a bright red emission and a large ON-OFF contrast, both in solution and in an aqueous suspension of nanoparticles (NPs). Using ultrafast transient absorption spectroscopy, the excited state dynamics was characterized for this dyad in THF solution and compared to its behavior in NPs state. An efficient energy transfer process between the PBI fluorophore and the DAE photochromic unit in its closed form was demonstrated, occurring in a few hundreds of femtoseconds.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-023-00405-5DOI Listing

Publication Analysis

Top Keywords

energy transfer
12
dynamics energy
4
transfer involved
4
involved diarylethene-perylenebisimide
4
diarylethene-perylenebisimide dyad
4
dyad comparison
4
comparison molecule
4
molecule nanoparticle
4
nanoparticle level
4
level photochromic
4

Similar Publications

Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.

View Article and Find Full Text PDF

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

It has long been speculated that the mechanical properties of the human oocyte can be an indicator for oocyte viability. Recent studies have demonstrated that embryo implantation rates, following Intra-Cytoplasmic Sperm Injection (ICSI) procedures, may be increased if the shear modulus value of the oocyte Zona Pellucida (ZP) is taken into consideration during embryo transfer. The shear modulus was determined by an iterative oocyte specific finite element (FE) analysis based on the clinical ICSI data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!