AI Article Synopsis

  • * Optimal conditions for enzyme production differ between the two bacteria; Cellulomonas sp. works best at room temperature (25-26℃) and pH 7 while Bacillus sp. prefers room temperature and a higher pH of 10, yielding distinct pectinase activities.
  • * Agro-waste substrates like orange peel and barley straw are effective for enzyme production, with orange peel being ideal for pectinase and cellulase, whereas barley

Article Abstract

The demand for enzymes is increasing continuously due to their applications in various avenues. The pectin-hydrolyzing bacteria, Cellulomonas sp. and Bacillus sp., isolated from forest soil have the potential to produce industrially important enzymes (pectinase, PGase, Cellulase, and xylanase). However, these bacteria have different optimal cultural conditions for pectinase production. The optimal cultural conditions for Cellulomonas sp. were room temperature (25-26℃), pH 7, 1% inoculum volume, and 1.5% citrus pectin with 8.82 ± 0.92 U/mL pectinase activity. And Bacillus sp. illustrated the highest pectinase activity (12.35 ± 0.72 U/mL) at room temperature, pH 10, 1% inoculum volume, and 1.5% pectin concentration. Among the different agro-wastes, the orange peel was found to be the best substrate for pectinase, PGase, and cellulase activity whereas barley straw for xylanase activity. Further, Cellulomonas sp. and Bacillus sp. illustrated higher pectinase activity from commercial pectin compared to orange peel showing their preference for commercial citrus pectin. In addition, the optimization by the Box-Behnken design increased pectinase activity for Cellulomonas sp., while a noticeable increase in activity was not observed in Bacillus sp. Besides, all the agro-wastes exploited in this study can be used for pectinase, PGase, and xylanase production but not cellulase. The study revealed that each bacteria has its specific optimal conditions and there is a variation in the capacity of utilizing the various lignocellulosic biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-023-03470-7DOI Listing

Publication Analysis

Top Keywords

pectinase activity
16
cellulomonas bacillus
12
pectinase pgase
12
utilizing lignocellulosic
8
lignocellulosic biomass
8
pectinase
8
pgase cellulase
8
optimal cultural
8
cultural conditions
8
room temperature
8

Similar Publications

Whether the calyx tube of the Korla fragrant pear falls off seriously affects the fruit quality. 'Xinnonglinxiang' is a mutant variety of the Korla fragrant pear, which has a high calyx removal rate under natural conditions, and calyx tube fall seriously affects the fruit quality. The mechanism behind the high calyx removal rate of 'Xinnonglinxiang' remains unclear; thus, Korla fragrant pear (PT) and 'Xinnonglinxiang' (YB) with different degrees of calyx abscission were used as examples and the abscission areas of calyx tubes were collected in the early (21 April), middle (23 April), and late (25 April) shedding stages to explore the regulatory mechanism behind the abscission.

View Article and Find Full Text PDF

Grape pomace, the solid residue from winemaking, is a rich source of polyphenolic compounds with significant antioxidant properties. However, the efficient extraction of these valuable compounds remains a challenge. This study focuses on optimizing the conditions for the enzyme-assisted extraction of polyphenolic compounds from red grape pomace using cellulase, hemicellulase, and pectinase.

View Article and Find Full Text PDF

Characterization of Major Cell-Wall-Degrading Enzymes Secreted by spp. Isolate Z1-1N Causing Postharvest Fruit Rot in Kiwifruit in China.

Biology (Basel)

December 2024

Key Laboratory City for Study and Utilization of Ethnic Medicinal Plant Resources of Western Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China.

Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood.

View Article and Find Full Text PDF

Microorganisms are preferred as an enzyme source due to their short lifespan, high production rate, affordability, and absence of harmful chemicals in enzymes generated from plant and animal sources. Fungi communities are biological factories for many bioactive compounds such as the important industrial enzyme pectinase. The current study dealt with production, optimization, purification, biocompatibility, and application of fungal pectinase obtained from five plant rhizospheres (banana, jarawa, lemon, tomato, and wheat) at Fayoum Governorate, Egypt.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been recognized as a serious health risk for ruminant animals. From a molecular perspective, indole-3-acid (IAA) possesses the potential to enhance the removal of AFB1 by rumen microbiota. Therefore, this study aims to investigate the impact of different concentrations of IAA on the removal of AFB1 by rumen microbiota using an technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!