Imaging through scattering layers based on the optical memory effect (OME) concept has been widely investigated in recent years. Among many scattering scenarios, it is very important to recover hidden targets with proper spatial distribution in the scene where multiple targets out of the OME range exist. In this Letter, we put forward a method for multi-target object scattering imaging. With the help of intensity correlation between the structured illumination patterns and recorded speckle images, the relative position of all hidden targets can be obtained and the movement of the targets within the OME range can be tracked. We experimentally implement scattering imaging with 16 targets and the motion tracking of them. Our results present a significant advance in a large field of view scattering imaging with multiple targets.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.483308DOI Listing

Publication Analysis

Top Keywords

scattering imaging
16
multi-target object
8
object scattering
8
intensity correlation
8
correlation structured
8
structured illumination
8
hidden targets
8
multiple targets
8
targets ome
8
ome range
8

Similar Publications

All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA.

Anal Chem

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.

An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands.

View Article and Find Full Text PDF

Angle-controlled strong and weak coupling in photon molecules.

Sci Rep

January 2025

Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

Strong light-matter coupling occurs when the rate of energy exchange between the electromagnetic mode and the molecular ensemble exceeds the competitive dissipation process. Coupled photon molecules with near-field light-matter interactions may produce new hybridized states when they reach the strong coupling region. Tunable Terahertz (THz) meta materials can be used to design sensors, optical modulators, etc.

View Article and Find Full Text PDF

Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy.

Int J Nanomedicine

January 2025

College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.

Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.

View Article and Find Full Text PDF

Visually significant ocular decompression retinopathy following laser peripheral iridotomy in a patient with primary acute angle-closure glaucoma.

Am J Ophthalmol Case Rep

December 2024

Department of Ophthalmology, Ross Eye Institute, University at Buffalo, 1176 Main Street, Buffalo, NY, 14209, United States.

Purpose: We report a single case of ocular decompression retinopathy (ODR) following neodymium-doped yttrium aluminum garnet laser peripheral iridotomy (Nd:YAG LPI) for primary acute angle-closure glaucoma associated with delayed visual recovery secondary to optic nerve head edema and macular thickening.

Observations: A 56-year-old female patient presented to the emergency department with primary acute angle-closure glaucoma. After topical and IV therapy did not improve intraocular pressure (IOP), an Nd:YAG LPI was performed.

View Article and Find Full Text PDF

The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!