A comprehensive study on the properties and implementation of glyoxylic-acetals in sodium-ion energy storage systems is presented. Electrolytes containing 1,1,2,2-tetramethoxyethane (tetramethoxyglyoxal, TMG), 1,1,2,2-tetraethoxyethane (tetraethoxyglyoxal, TEG) and a mixture of the latter with propylene carbonate (PC) exhibit increased thermal stabilities and higher flash points compared to classical electrolytes based on carbonates as solvents. Due to its favorable properties, 1 m NaTFSI in TEG/PC (3 : 7), has been selected and used for sodium-ion energy storage systems based on a Prussian Blue (PB) positive electrode and a hard carbon (HC) negative electrode. Compared to conventional electrolyte (based on a 1 : 1 mixture of ethylene carbonate, EC, and dimethyl carbonate, DMC), this glyoxylic-acetal electrolyte provides competitive capacity and prolonged cycle life. Postmortem XPS analysis indicates that the electrode-electrolyte interphases formed in presence of TEG are thicker and presumably more protective, inhibiting typical degradation processes of the electrodes. Furthermore, it is demonstrated that the suitable properties of TEG on the cycling stability can also be exploited for the construction of highly stable sodium-ion capacitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202300161 | DOI Listing |
Adv Sci (Weinh)
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China.
Amorphous clusters are gaining prominence as prospective hosts for sodium-ion hybrid capacitors (SIHCs), but their efficacy is still affected by atomic coordination. Optimization of ion storage and charge transport can be achieved through high coordination and bimetallic configurations. Herein, high-coordination amorphous P-Nb-W-P (Nb/W-P) clusters are skillfully tailored by bridging Nb into the second shell of W in the W-P configuration, nested in situ in conductive and stable N, P co-doped carbon nanospheres (Nb/W-P@NPC).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 China; China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China. Electronic address:
NbO has become a focus of research for its suitability as an anode material in sodium ion capacitors (SICs), due to its open ionic channels. The integration of NbO with reduced graphene oxide (rGO) is known to boost its electrical conductivity. However, the sluggish interfacial charge transfer kinetics and interface collapse of NbO/rGO pose challenges to its rate capability and durability.
View Article and Find Full Text PDFSmall
January 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
J Colloid Interface Sci
February 2025
State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, Shannxi, China. Electronic address:
Adv Sci (Weinh)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.
Sodium-storage performance of pyrite FeS is greatly improved by constructing various FeS-based nanostructures to optimize its ion-transport kinetics and structural stability. However, less attention has been paid to rapid capacity degradation and electrode failure caused by the irreversible phase-transition of intermediate NaFeS to FeS and polysulfides dissolution upon cycling. Under the guidance of theoretical calculations, coupling FeS nanoparticles with honeycomb-like nitrogen-doped carbon (NC) nanosheet supported single-atom manganese (SAs Mn) catalyst (FeS/SAs Mn@NC) via atomic-interface engineering is proposed to address above challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!