Background: Acne pathophysiology includes a complex interaction among inflammatory mediators, hyperseborrhea, alteration of keratinization and follicular colonization by Propionibacterium acnes.
Aims: To describe the impact of the exposome on acne and how photoprotection can improve outcomes.
Methods: A narrative review of the literature was carried out; searches with Google Scholar and Pubmed from January 1992 to November 2022 were performed. The keywords used were "acne," "sunscreens," "photoprotection," "cosmetics," "cosmeceuticals," "pathogenesis," "etiology," "exposome," "sunlight," "stress," "lack of sleep," "diet," "postinflammatory hyperpigmentation," "pollution," "exposome," "ultraviolet radiation," and "visible light."
Results: Environmental factors such as solar radiation, air pollution, tobacco consumption, psychological stress, diverse microorganisms, nutrition, among others, can trigger or worsen acne. Solar radiation can temporarily improve lesions. However, it can induce proinflammatory and profibrotic responses, and produce post-inflammatory hyperpigmentation and/or post-inflammatory erythema. While photoprotection is widely recommended to acne patients, only four relevant studies were found. Sunscreens can significantly improve symptomatology or enhance treatment and can prevent post-inflammatory hyperpigmentation. Furthermore, they can provide camouflage and improve quality of life. Based on acne pathogenesis, optimal sunscreens should have emollient, antioxidant and sebum controlling properties.
Conclusions: The exposome and solar radiation can trigger or worsen acne. UV light can induce post-inflammatory hyperpigmentation/erythema, and can initiate flares. The use of specifically formulated sunscreens could enhance adherence to topical or systemic therapy, camouflage lesions (tinted sunscreens), decrease inflammation, and reduce the incidence of post-inflammatory hyperpigmentation/erythema.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jocd.15726 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Technology Indore, Simrol 453552, India.
Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Sciences, Tezpur University, Tezpur, India.
This study investigates the seasonal and diurnal variations of soil CO flux (Fc) and the impact of meteorological variables on its dynamics. The study took place in the subtropical forest ecosystem of Kaziranga National Park (KNP), from November 2019 to March 2020. The highest Fc (6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!