Nature builds numerous structurally complex composites with fascinating mechanical robustness and functionalities by harnessing biopolymers and amorphous calcium carbonate (ACC). The key to successfully mimicking these natural designs is efficiently stabilizing ACC, but developing highly efficient, biodegradable, biocompatible, and sustainable stabilizing agents remains a grand challenge since anhydrous ACC is inherently unstable toward crystallization in the wet state. Inspired by the stabilized ACC in crustacean cuticles, we report the efficient stabilization ability of the most abundant biopolymer-cellulose nanofibrils (CNFs) for ACC. Through the cooperative stabilizing effect of surface carboxyl groups and a rigid segregated network, the CNFs exhibit long-term stability (more than one month) and achieved a stabilization efficiency of 3.6 and 4.4 times that of carboxymethyl cellulose (CMC) and alginate, respectively, even higher than poly(acrylic acid). The resulting CNF/ACC dispersions can be constructed into transparent composite films with the high strength of 286 MPa and toughness up to 28.5 MJ/m, which surpass those of the so far reported synthetic biopolymer-calcium carbonate/phosphate composites. The dynamic interfacial interaction between nanocomponents also provides the composite films with good self-healing properties. Owing to their good wet stability, the composite films present high humidity sensitivity for monitoring respiration and finger contact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100558PMC
http://dx.doi.org/10.1021/acsnano.2c12385DOI Listing

Publication Analysis

Top Keywords

composite films
12
amorphous calcium
8
calcium carbonate
8
films high
8
acc
5
bioinspired stabilization
4
stabilization amorphous
4
carbonate carboxylated
4
carboxylated nanocellulose
4
nanocellulose enables
4

Similar Publications

In-situ Polymerization Induced Seed-Root Anchoring Structure for Enhancing Stability and Efficiency in Perovskite Solar Modules.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.

The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.

View Article and Find Full Text PDF

Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells.

View Article and Find Full Text PDF

Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:

Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs).

View Article and Find Full Text PDF

Enhancing strategies of MOFs-derived materials for microwave absorption: review and perspective.

Adv Colloid Interface Sci

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Microwave absorption materials (MAMs) gradually exhibit crucial applications in reducing electromagnetic wave (EMW) pollution, avoiding EMW information leakage, and solving radar stealth. Metal-organic frameworks (MOFs)-derived materials are flourishing in the domain of EMW absorption attributed to their especial structures, heteroatom doping and controllable components. Herein, various strategies to enhance the EMW absorption ability of MOFs-derived materials are outlined, covering structural design and compositional regulation.

View Article and Find Full Text PDF

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!