A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolution. | LitMetric

A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolution.

Bioinformatics

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: April 2023

Motivation: Reconstructing and analyzing all blood vessels throughout the brain is significant for understanding brain function, revealing the mechanisms of brain disease, and mapping the whole-brain vascular atlas. Vessel segmentation is a fundamental step in reconstruction and analysis. The whole-brain optical microscopic imaging method enables the acquisition of whole-brain vessel images at the capillary resolution. Due to the massive amount of data and the complex vascular features generated by high-resolution whole-brain imaging, achieving rapid and accurate segmentation of whole-brain vasculature becomes a challenge.

Results: We introduce HP-VSP, a high-performance vessel segmentation pipeline based on deep learning. The pipeline consists of three processes: data blocking, block prediction, and block fusion. We used parallel computing to parallelize this pipeline to improve the efficiency of whole-brain vessel segmentation. We also designed a lightweight deep neural network based on multi-resolution vessel feature extraction to segment vessels at different scales throughout the brain accurately. We validated our approach on whole-brain vascular data from three transgenic mice collected by HD-fMOST. The results show that our proposed segmentation network achieves the state-of-the-art level under various evaluation metrics. In contrast, the parameters of the network are only 1% of those of similar networks. The established segmentation pipeline could be used on various computing platforms and complete the whole-brain vessel segmentation in 3 h. We also demonstrated that our pipeline could be applied to the vascular analysis.

Availability And Implementation: The dataset is available at http://atlas.brainsmatics.org/a/li2301. The source code is freely available at https://github.com/visionlyx/HP-VSP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068744PMC
http://dx.doi.org/10.1093/bioinformatics/btad145DOI Listing

Publication Analysis

Top Keywords

vessel segmentation
16
whole-brain vessel
12
whole-brain
9
whole-brain vasculature
8
segmentation
8
capillary resolution
8
whole-brain vascular
8
segmentation pipeline
8
pipeline
6
vessel
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!