Meiotic recombination is an essential mechanism during sexual reproduction and includes the exchange of chromosome segments between homologous chromosomes. New allelic combinations are transmitted to the new generation, introducing novel genetic variation in the offspring genomes. With the improvement of high-throughput whole-genome sequencing technologies, large numbers of recombinant individuals can now be sequenced with low sequencing depth at low costs, necessitating computational methods for reconstructing their haplotypes. The main challenge is the uncertainty in haplotype calling that arises from the low information content of a single genomic position. Straightforward sliding window-based approaches are difficult to tune and fail to place recombination breakpoints precisely. Hidden Markov model (HMM)-based approaches, on the other hand, tend to over-segment the genome. Here, we present RTIGER, an HMM-based model that exploits in a mathematically precise way the fact that true chromosome segments typically have a certain minimum length. We further separate the task of identifying the correct haplotype sequence from the accurate placement of haplotype borders, thereby maximizing the accuracy of border positions. By comparing segmentations based on simulated data with known underlying haplotypes, we highlight the reasons for RTIGER outperforming traditional segmentation approaches. We then analyze the meiotic recombination pattern of segregants of 2 Arabidopsis (Arabidopsis thaliana) accessions and a previously described hyper-recombining mutant. RTIGER is available as an R package with an efficient Julia implementation of the core algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231367PMC
http://dx.doi.org/10.1093/plphys/kiad191DOI Listing

Publication Analysis

Top Keywords

hidden markov
8
markov model
8
meiotic recombination
8
chromosome segments
8
reliable genotyping
4
genotyping recombinant
4
recombinant genomes
4
genomes robust
4
robust hidden
4
model meiotic
4

Similar Publications

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs.

View Article and Find Full Text PDF

Noise reduction of low-dose electron holograms using the wavelet hidden Markov model.

Microscopy (Oxf)

January 2025

The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.

The precision in electron holography studies on electrostatic and magnetic fields depends on the image quality of an electron hologram. Enhancing the image quality of electron holograms is essential for the comprehensive analysis of weak electromagnetic fields; however, extended electron beam irradiation can lead to undesirable radiation damage and contamination. Recent studies have demonstrated that noise reduction using the wavelet hidden Markov model (WHMM) can improve the precision of phase analysis for limited thin-foiled crystals.

View Article and Find Full Text PDF

Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.

View Article and Find Full Text PDF

Polariton lattices as binarized neuromorphic networks.

Light Sci Appl

January 2025

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!