Mitochondrial diseases are a group of disorders defined by defects in oxidative phosphorylation caused by nuclear- or mitochondrial-encoded gene mutations. A main cellular phenotype of mitochondrial disease mutations are redox imbalances and inflammatory signaling underlying pathogenic signatures of these patients. Depending on the type of mitochondrial mutation, certain mechanisms can efficiently rescue cell death vulnerability. One method is the inhibition of mitochondrial translation elongation using tetracyclines, potent suppressors of cell death in mitochondrial disease mutant cells. However, the mechanisms whereby tetracyclines promote cell survival are unknown. Here, we show that in mitochondrial mutant disease cells, tetracycline-mediated inhibition of mitoribosome elongation promotes survival through suppression of the ER stress IRE1α protein. Tetracyclines increased levels of the splitting factor MALSU1 (Mitochondrial Assembly of Ribosomal Large Subunit 1) at the mitochondria with recruitment to the mitochondrial ribosome (mitoribosome) large subunit. MALSU1, but not other quality control factors, was required for tetracycline-induced cell survival in mitochondrial disease mutant cells during glucose starvation. In these cells, nutrient stress induced cell death through IRE1α activation associated with a strong protein loading in the ER lumen. Notably, tetracyclines rescued cell death through suppression of IRE1α oligomerization and activity. Consistent with MALSU1 requirement, MALSU1 deficient mitochondrial mutant cells were sensitive to glucose-deprivation and exhibited increased ER stress and activation of IRE1α that was not reversed by tetracyclines. These studies show that inhibition of mitoribosome elongation signals to the ER to promote survival, establishing a new interorganelle communication between the mitoribosome and ER with implications in basic mechanisms of cell survival and treatment of mitochondrial diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028993 | PMC |
http://dx.doi.org/10.1101/2023.03.09.531795 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!