We previously developed sans spike-in quantitative chromatin immunoprecipitation sequencing (siQ-ChIP), a technique that introduces an absolute quantitative scale to ChIP-seq data without reliance on spike-in normalization approaches. The physical model of siQ-ChIP predicted that the IP step of ChIP would produce a classical binding isotherm when antibody or epitope was titrated. Here, we define experimental conditions in which this titration is observable for antibodies that recognize modified states of histone proteins. We show that minimally sequenced points along an isotherm can reveal differential binding specificities that are associated with on- and off-target epitope interactions. This work demonstrates that the interpretation of histone post-translational modification distribution from ChIP-seq data has a dependence on antibody concentration. Collectively, these studies introduce a simplified and reproducible experimental method to generate quantitative ChIP-seq data without spike-in normalization and demonstrate that histone antibody specificity can be analyzed directly in ChIP-seq experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028865PMC
http://dx.doi.org/10.1101/2023.03.08.531745DOI Listing

Publication Analysis

Top Keywords

chip-seq data
12
histone antibody
8
antibody specificity
8
spike-in normalization
8
analysis histone
4
antibody
4
specificity directly
4
directly sequencing
4
data
4
sequencing data
4

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Transcriptional silencers are -regulatory elements that downregulate the expression of target genes. Although thousands of silencers have been identified experimentally, a predictive chromatin signature of silencers has not been found. H4K20me1 previously was reported to be highly enriched among human silencers, but our reanalysis of those data using an appropriate background revealed that the enrichment is only marginal.

View Article and Find Full Text PDF

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic features. Over the past 15 years, edgeR has been a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count data with replicates and the use of generalized linear models to analyze complex experimental designs.

View Article and Find Full Text PDF

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!