Cells harbor numerous mesoscale membraneless compartments that house specific biochemical processes and perform distinct cellular functions. These protein and RNA-rich bodies are thought to form through multivalent interactions among proteins and nucleic acids resulting in demixing via liquid-liquid phase separation (LLPS). Proteins harboring intrinsically disordered regions (IDRs) predominate in membraneless organelles. However, it is not known whether IDR sequence alone can dictate the formation of distinct condensed phases. We identified a pair of IDRs capable of forming spatially distinct condensates when expressed in cells. When reconstituted in vitro, these model proteins do not co-partition, suggesting condensation specificity is encoded directly in the polypeptide sequences. Through computational modeling and mutagenesis, we identified the amino acids and chain properties governing homotypic and heterotypic interactions that direct selective condensation. These results form the basis of physicochemical principles that may direct subcellular organization of IDRs into specific condensates and reveal an IDR code that can guide construction of orthogonal membraneless compartments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028963PMC
http://dx.doi.org/10.1101/2023.03.10.532134DOI Listing

Publication Analysis

Top Keywords

condensed phases
8
membraneless compartments
8
determinants disordered
4
disordered protein
4
protein co-assembly
4
co-assembly discrete
4
discrete condensed
4
phases cells
4
cells harbor
4
harbor numerous
4

Similar Publications

Enhanced second harmonic generation in a 2 polymorph of CHNOZn for UV nonlinear optical applications.

Dalton Trans

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

The quest for novel nonlinear optical (NLO) polymorphs is pivotal for advancing laser technology and frequency conversion applications. We present a detailed study on the synthesis and properties of the 2 polymorph of CHNOZn, which exhibits an enhanced second harmonic generation (SHG) effect, 0.3 times that of KDP, nearly 8-fold higher than the 422 phase.

View Article and Find Full Text PDF

Activity waves in condensed excitable phases of Quincke rollers.

Soft Matter

January 2025

Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.

Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively.

View Article and Find Full Text PDF

Unlabelled: Proteins commonly self-assemble to create liquid or solid condensates with diverse biological activities. The mechanisms of assembly are determined by each protein's sequence and cellular context. We previously developed distributed amphifluoric FRET (DAmFRET) to analyze sequence determinants of self-assembly in cells.

View Article and Find Full Text PDF

Liquid-liquid phase separation driven by charge heterogeneity.

Commun Phys

December 2024

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.

View Article and Find Full Text PDF

Polymer-dispersed liquid crystals (PDLCs) stand at the intersection of polymer science and liquid crystal technology, offering a unique blend of optical versatility and mechanical durability. These composite materials are composed of droplets of liquid crystals interspersed in a matrix of polymeric materials, harnessing the optical properties of liquid crystals while benefiting from the structural integrity of polymers. The responsiveness of LCs combined with the mechanical rigidity of polymers make polymer/LC composites-where the polymer network or matrix is used to stabilize and modify the LC phase-extremely important for scientists developing novel adaptive optical devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!