The nation's opioid overdose deaths reached an all-time high in 2021. The majority of deaths are due to synthetic opioids represented by fentanyl. Naloxone, which is an FDA-approved reversal agent, antagonizes opioids through competitive binding at the mu-opioid receptor (mOR). Thus, knowledge of opioid's residence time is important for assessing the effectiveness of naloxone. Here we estimated the residence times of 15 fentanyl and 4 morphine analogs using metadynamics, and compared them with the most recent measurement of the opioid kinetic, dissociation, and naloxone inhibitory constants (Mann, Li et al, Clin. Pharmacol. Therapeut. 2022). Importantly, the microscopic simulations offered a glimpse at the common binding mechanism and molecular determinants of dissociation kinetics for fentanyl analogs. The insights inspired us to develop a machine learning (ML) approach to analyze the kinetic impact of fentanyl's substituents based on the interactions with mOR residues. This proof-of-concept approach is general; for example, it may be used to tune ligand residence times in computer-aided drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028827PMC
http://dx.doi.org/10.1101/2023.03.06.531338DOI Listing

Publication Analysis

Top Keywords

machine learning
8
residence times
8
structure-kinetics relationships
4
relationships opioids
4
opioids metadynamics
4
metadynamics machine
4
learning nation's
4
nation's opioid
4
opioid overdose
4
overdose deaths
4

Similar Publications

Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins.

View Article and Find Full Text PDF

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!