Generating stem memory T cells (T ) is a key goal for improving cancer immunotherapy. Yet, the optimal way to modulate signaling pathways that enrich T properties remains elusive. Here, we discovered that the degree to which the PI3Kδ pathway is blocked pharmaceutically can generate T cells with differential levels of stemness properties. This observation was based on the progressive enrichment of transcriptional factors of stemness (Tcf-1 and Lef-1). Additional investigation revealed that T cells with high stemness features had enhanced metabolic plasticity, marked by heightened mitochondrial function and glucose uptake. Conversely, T cells with low or medium features of stemness expressed more inhibitory checkpoint receptors (Tim-3, CD39) and were vulnerable to antigen-induced cell death. Only TCR-antigen specific T cells with high stemness persisted following adoptive transfer and mounted protective immunity to melanoma tumors. Likewise, the strongest level of PI3Kδ blockade generated human tumor infiltrating lymphocytes (TILs) and CAR T cells with heightened stemness properties, in turn bolstering their capacity to regress human mesothelioma tumors. We find that the level of stemness T cells possess differentially impacts their potency upon transfer in three tumor models. Mechanistically, both Lef-1 and Tcf-1 sustain anti-tumor protection by high T , as deletion of either one compromised cellular therapy. Collectively, these findings highlight the therapeutic potential of carefully modulating PI3Kδ signaling in T cells to confer high stemness and mediate protective responses to solid tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028919PMC
http://dx.doi.org/10.1101/2023.03.08.531589DOI Listing

Publication Analysis

Top Keywords

high stemness
12
stemness
9
differentially impacts
8
impacts potency
8
cancer immunotherapy
8
lef-1 tcf-1
8
cells
8
stemness properties
8
cells high
8
degree cell
4

Similar Publications

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

Prognostic model based on tumor stemness genes for triple-negative breast cancer.

Sci Rep

December 2024

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.

Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis and lack of effective treatment. In this study, TNBCs were analyzed from the perspective of tumor stemness based on scRNA-seq data. The analysis showed that tumor cells of TNBC were divided into 4 subtypes, with subtype 2 having the highest stemness score.

View Article and Find Full Text PDF

Background & Aims: GD2, a member of the ganglioside (GS) family (sialic acid-containing glycosphingolipids), is a potential biomarker of cancer stem cells (CSC) in several tumours. However, the possible role of GD2 and its biosynthetic enzyme, GD3 synthase (GD3S), in intrahepatic cholangiocarcinoma (iCCA) has not been explored.

Methods: The stem-like subset of two iCCA cell lines was enriched by sphere culture (SPH) and compared to monolayer parental cells (MON).

View Article and Find Full Text PDF

The incidence and development of various tumors, such as hepatocellular carcinoma (HCC), are linked to tumor stem cells. Although research has revealed how important SCL/TAL1 interruption site (STIL) is in many human tumors, the impact of STIL on HCC stem cells is poorly understood. This study aimed to examine the regulatory mechanisms and the function of STIL in the stemness of HCC tumor cells.

View Article and Find Full Text PDF

TNF-α-Induced NF-κB Alter the Methylation Status of Some Stemness Genes in HT-29 Human Colon Cancer Cell.

Adv Biomed Res

November 2024

Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Background: Acquisition of stem-like properties requires overcoming the epigenetic barrier of differentiation and re-expression of several genes involved in stemness and the cell cycle. DNA methylation is the classic epigenetic mechanism for de/differentiation. The writers and erasers of DNA methylation are not site-specific enzymes for altering specific gene methylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!