A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitive cluster-free differential expression testing. | LitMetric

Sensitive cluster-free differential expression testing.

bioRxiv

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.

Published: March 2023

Comparing molecular features, including the identification of genes with differential expression (DE) between conditions, is a powerful approach for characterising disease-specific phenotypes. When testing for DE in single-cell RNA sequencing data, current pipelines first assign cells into discrete clusters (or cell types), followed by testing for differences within each cluster. Consequently, the sensitivity and specificity of DE testing are limited and ultimately dictated by the granularity of the cell type annotation, with discrete clustering being especially suboptimal for continuous trajectories. To overcome these limitations, we present miloDE - a cluster-free framework for differential expression testing. We build on the Milo approach, introduced for differential cell abundance testing, which leverages the graph representation of single-cell data to assign relatively homogenous, 'neighbouring' cells into overlapping neighbourhoods. We address key differences between differential abundance and expression testing at the level of neighbourhood assignment, statistical testing, and multiple testing correction. To illustrate the performance of miloDE we use both simulations and real data, in the latter case identifying a transient haemogenic endothelia-like state in chimeric mouse embryos lacking Tal1 as well as uncovering distinct transcriptional programs that characterise changes in macrophages in patients with Idiopathic Pulmonary Fibrosis. miloDE is available as an open-source R package at https://github.com/MarioniLab/miloDE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028920PMC
http://dx.doi.org/10.1101/2023.03.08.531744DOI Listing

Publication Analysis

Top Keywords

differential expression
12
expression testing
12
testing
9
differential
5
sensitive cluster-free
4
cluster-free differential
4
expression
4
testing comparing
4
comparing molecular
4
molecular features
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!