Individual differences in cognitive performance in childhood are a key predictor of significant life outcomes such as educational attainment and mental health. Differences in cognitive ability are governed in part by variations in brain structure. However, studies commonly focus on either grey or white matter metrics in humans, leaving open the key question as to whether grey or white matter microstructure play distinct or complementary roles supporting cognitive performance. To compare the role of grey and white matter in supporting cognitive performance, we used regularized structural equation models to predict cognitive performance with grey and white matter measures. Specifically, we compared how grey matter (volume, cortical thickness and surface area) and white matter measures (volume, fractional anisotropy and mean diffusivity) predicted individual differences in cognitive performance. The models were tested in 11,876 children (ABCD Study, 5680 female; 6196 male) at 10 years old. We found that grey and white matter metrics bring partly non-overlapping information to predict cognitive performance. The models with only grey or white matter explained respectively 15.4% and 12.4% of the variance in cognitive performance, while the combined model explained 19.0%. Zooming in we additionally found that different metrics within grey and white matter had different predictive power, and that the tracts/regions that were most predictive of cognitive performance differed across metric. These results show that studies focusing on a single metric in either grey or white matter to study the link between brain structure and cognitive performance are missing a key part of the equation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028815PMC
http://dx.doi.org/10.1101/2023.03.06.529634DOI Listing

Publication Analysis

Top Keywords

white matter
40
cognitive performance
40
grey white
36
differences cognitive
16
matter metrics
12
matter
11
cognitive
11
grey
10
performance
10
white
9

Similar Publications

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery.

View Article and Find Full Text PDF

Elevation of ganglioside degradation pathway drives GM2 and GM3 within amyloid plaques in a transgenic mouse model of Alzheimer's disease.

Neurobiol Dis

January 2025

Vulnerable Brain Lab, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disease that accounts for two-thirds of all dementia cases, and age is the strongest risk factor. In addition to the amyloid hypothesis, lipid dysregulation is now recognized as a core component of AD pathology. Gangliosides are a class of membrane lipids of the glycosphingolipid family and are enriched in the central nervous system (CNS).

View Article and Find Full Text PDF

A systematic review of diffusion tensor imaging and tractography in Dementia with Lewy Bodies and Parkinson's Disease Dementia.

Neurosci Biobehav Rev

January 2025

Department of Psychiatry, University of Cambridge, Level E4, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, United Kingdom.

We reviewed studies that used diffusion tensor imaging (DTI) and tractography to characterise white matter changes in Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD). The search included MEDLINE and EMBASE, and we used a narrative strategy to synthesise the evidence. Data was extracted from 57 studies, of which the majority were considered 'good quality'.

View Article and Find Full Text PDF

Distinction in the function and microstructure of white matter between major depressive disorder and generalized anxiety disorder.

J Affect Disord

January 2025

Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230032, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.

Background: Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are two of the leading causes of impairment to human mental health. These two psychiatric disorders overlap in many symptoms and neurobiological features thus difficult to distinguish in some cases.

Methods: We enrolled 102 participants, comprising 40 patients with MDD, 32 patients with GAD and 30 matched healthy controls (HCs), to undergo multimodal magnetic resonance imaging (MRI) scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!