Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031984PMC
http://dx.doi.org/10.1186/s12951-023-01826-1DOI Listing

Publication Analysis

Top Keywords

delivery systems
20
targeting schemes
12
nano-drug delivery
12
systems osteosarcoma
8
drug delivery
8
delivery
5
systems
5
active targeting
4
schemes nano-drug
4
osteosarcoma therapeutics
4

Similar Publications

Introduction: Prior research shows that in-person exposure to electronic nicotine delivery systems (ENDS) use increases desire for cigarettes and ENDS. However, less is known about the impact of cues delivered during remote interactions. This study extends previous in-person cue work by leveraging a remote confederate-delivered cue-delivery paradigm to evaluate the impact of dual nicotine vaping (vs.

View Article and Find Full Text PDF

Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Negative pressure wound therapy (NPWT) is a very effective method in the treatment of dehiscent, infected, and non-healing wounds. Difficult wound healing occurs especially in late pregnancy due to the rapid enlargement of the uterus and the constantly increasing tension of the entire abdominal wall. In cases of dehiscence of the surgical wound during pregnancy, proper subsequent treatment is needed, where it is necessary to consider the safety of the mother as well as the fetus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!