The correlation between ubiquitin-editing enzyme A20 and E3 ubiquitin ligase ring finger protein (RNF) 168 has been reported to be critical for repair of DNA damage. This study aimed to evaluate the potential role of this regulatory interaction in the pathogenesis of lupus nephritis (LN). The expression of RNF168 and A20 was measured in the podocytes derived from MRL/lpr murine lupus as well as patients with LN. Cell-based studies using renal podocytes bearing silenced RNF168, over-expressed A20, autophagy-related gene (Atg) 5 (a ubiquitin-like modifier), or silenced Atg5 were used to assess the effect of RNF168, A20, and Atg5 on DNA damage repair and nuclear factor kappa-B (NF-κB) activation in LN. It was found that podocyte autophagy was over-activated in LN and the abnormal podocyte autophagy led to down-regulation of A20, up-regulation of RNF168, and activation of the NF-κB. RNF168 silencing or A20 restoration inhibited activation of NF-κB pathway and promoted repair of DNA damage, where the level of autophagy was not changed. Activated A20 in podocytes weakened the promoting action of cell autophagy on RNF168. The current results suggest that RNF168 dysfunction may be involved in the pathogenesis of LN via down-regulation of A20 expression. Autophagy and RNF168 may be therapeutic targets for the prevention and treatment of LN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090963PMC
http://dx.doi.org/10.1159/000527624DOI Listing

Publication Analysis

Top Keywords

dna damage
12
a20
9
rnf168
9
ubiquitin-editing enzyme
8
enzyme a20
8
nf-κb activation
8
lupus nephritis
8
repair dna
8
rnf168 a20
8
podocyte autophagy
8

Similar Publications

Background And Hypothesis: Gut dysbiosis characterized by an imbalance in pathobionts (Enterobacter, Escherichia and Salmonella) and symbionts (Bifidobacterium, Lactobacillus and Prevotella) can occur during chronic kidney disease (CKD) progression. We evaluated the associations between representative symbionts (Bifidobacterium and Lactobacillus) and pathobionts (Enterobacteriaceae) with kidney function in persons with autosomal dominant polycystic kidney disease (ADPKD).

Methods: In this cross-sectional study, 29 ADPKD patients were matched to 15 controls at a 2:1 ratio.

View Article and Find Full Text PDF

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.

View Article and Find Full Text PDF

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!