While overuse is a prominent risk factor for tendinopathy, the fatigue-induced structural damage responsible for initiating tendon degeneration remains unclear. Denaturation of collagen molecules and collagen fiber disorganization have been observed within certain tendons in response to fatigue loading. However, no studies have investigated whether these forms of tissue damage occur in Achilles tendons, which commonly exhibit tendinopathy. Therefore, the objective of this study was to determine whether mouse Achilles tendons undergo collagen denaturation and collagen fiber disorganization when cyclically loaded to failure. Consistent with previous testing of other energy-storing tendons, we found that cyclic loading of mouse Achilles tendons produced collagen disorganization but minimal collagen denaturation. To determine whether the lack of collagen denaturation is unique to mouse Achilles tendons, we monotonically loaded the Achilles and other mouse tendons to failure. We found that the patellar tendon was also resistant to collagen denaturation, but the flexor digitorum longus (FDL) tendon and tail tendon fascicles were not. Furthermore, the Achilles and patellar tendons had a lower tensile strength and modulus. While this may be due to differences in tissue structure, it is likely that the lack of collagen denaturation during monotonic loading in both the Achilles and patellar tendons was due to failure near their bony insertions, which were absent in the FDL and tail tendons. These findings suggest that mouse Achilles tendons are resistant to collagen denaturation in situ and that Achilles tendon degeneration may not be initiated by mechanically-induced damage to collagen molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069227 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2023.111545 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:
This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.
View Article and Find Full Text PDFClin Implant Dent Relat Res
December 2024
Department of Periodontology, University of Bern, Bern, Switzerland.
Introduction: Platelet-rich fibrin (PRF) is being increasingly utilized in surgical procedures due to various improvements in clinical outcomes. More recently, a heating process to denature albumin in the platelet poor plasma (PPP) layer has been shown to extend the resorption time of PRF from a typical 2-week period to 4-6 months. Because of its > 4 month resorption properties, extended PRF (e-PRF) membranes have been used in dentistry as an alternative to collagen membranes in alveolar ridge preservations, ridge augmentations, soft tissue grafting, and as a barrier membrane in lateral sinus grafting procedures.
View Article and Find Full Text PDFActa Histochem
December 2024
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Laishan District, Yantai, Shandong 264005, China. Electronic address:
Despite of decades of efforts, novel approaches are still limited to attenuate or prevent skin scarring. A previous report published in Science demonstrated that inhibition of YAP promotes scarless wound repair by regeneration. Due to the difficult drugability of targeting YAP, we speculated that inhibition of TEAD, a partner molecule of YAP, might exist similar therapeutic potential.
View Article and Find Full Text PDFHeliyon
November 2024
Institute of Cultural Heritage, Shandong University, Qingdao, 266237, China.
Int J Biol Macromol
December 2024
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!