A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Smart Anisotropic Colloidal Composites: A Suitable Platform for Modifying the Phase Transition of Diblock Copolymers by Gold Nanoparticles. | LitMetric

Surface modification of metallic nanoparticles (NPs) by stimuli-responsive polymers is a benign method to prepare smart colloidal composites which tune the characteristic properties of individual systems. The temperature-dependent transition of diblock copolymer poly(-isopropylacrylamide)-block-poly(-vinylcaprolactam) (PNIPMA-b-PVCL) synthesized using reversible addition-fragmentation chain transfer polymerization was studied by incorporating anisotropic gold NPs (AGPs) such as spheres (AuNSs), rods (AuNRs), cubes (AuNCs), and rhombic dodecahedrals (AuRDs). Shape-dependent physiochemical properties of nanostructures alter the lower critical solution temperature (LCST) of the chemical inhomogeneous diblock copolymer. Heterogeneous nucleation of AuNPs was facilitated by seed-mediated synthesis for incorporating uniformity. In the mixed system, the presence of PNIPAM-b-PVCL modifies the surface of AGPs through physisorption which is supported by transmission electron microscopy and field emission scanning electron microscopy showing the NPs embedding in the polymeric matrix. Furthermore, steady state fluorescence spectroscopy and Fourier transform infrared spectroscopy were performed to examine the phase transition behavior of PNIPAM-b-PVCL in AGPs. The formation of a smart polymer nanocomposite alters the physiochemical properties of the diblock copolymer as demonstrated from the variation of LCST in the dynamic light scattering measurement. Henceforth, functionalizing the surfaces of AGPs with a thermoresponsive diblock copolymer provides combinatorial benefits in the properties of smart polymeric colloidal systems with potential applications in bioimaging and drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00181DOI Listing

Publication Analysis

Top Keywords

diblock copolymer
16
colloidal composites
8
phase transition
8
transition diblock
8
physiochemical properties
8
electron microscopy
8
diblock
5
smart
4
smart anisotropic
4
anisotropic colloidal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!