Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface modification of metallic nanoparticles (NPs) by stimuli-responsive polymers is a benign method to prepare smart colloidal composites which tune the characteristic properties of individual systems. The temperature-dependent transition of diblock copolymer poly(-isopropylacrylamide)-block-poly(-vinylcaprolactam) (PNIPMA-b-PVCL) synthesized using reversible addition-fragmentation chain transfer polymerization was studied by incorporating anisotropic gold NPs (AGPs) such as spheres (AuNSs), rods (AuNRs), cubes (AuNCs), and rhombic dodecahedrals (AuRDs). Shape-dependent physiochemical properties of nanostructures alter the lower critical solution temperature (LCST) of the chemical inhomogeneous diblock copolymer. Heterogeneous nucleation of AuNPs was facilitated by seed-mediated synthesis for incorporating uniformity. In the mixed system, the presence of PNIPAM-b-PVCL modifies the surface of AGPs through physisorption which is supported by transmission electron microscopy and field emission scanning electron microscopy showing the NPs embedding in the polymeric matrix. Furthermore, steady state fluorescence spectroscopy and Fourier transform infrared spectroscopy were performed to examine the phase transition behavior of PNIPAM-b-PVCL in AGPs. The formation of a smart polymer nanocomposite alters the physiochemical properties of the diblock copolymer as demonstrated from the variation of LCST in the dynamic light scattering measurement. Henceforth, functionalizing the surfaces of AGPs with a thermoresponsive diblock copolymer provides combinatorial benefits in the properties of smart polymeric colloidal systems with potential applications in bioimaging and drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c00181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!