Exploring the ecological function of potential core bacteria for high-efficiency composting can provide a fundamental understanding of the role of composting bacterial communities. Mushroom residue and kitchen garbage at different ratios (N1: 1/1, N2: 1/2) of dry weight were tested to investigate the key ecological role of the core bacteria responsible for producing mature compost. N1 had a peak temperature of 75.0 °C which was higher than N2 (68.3 °C). Other key composting parameters (carbon to nitrogen ratio (C/N) and germination index (GI)) also indicated that N1 achieved higher compost maturity. Rice seedlings experiments also further validated this conclusion. Putative key bacterial taxa (Thermobifida, Luteimonasd, Bacillus, etc.) were positively associated with the GI, indicating a substantial contribution to composting maturity. Co-occurrence network analysis revealed the ecological function of potentially beneficial core bacteria promoted cooperation among the bacterial community. The putative core bacteria in N1 may affect composting efficiency. Our findings reveal the mechanism of potential core bacteria throughout the compost maturity phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-26468-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!