Objective: This study presents a comparison of the Test Device for Human Occupant Restraint (THOR) 50M and Hybrid III (HIII) 50M anthropomorphic test device (ATD) geometries and rear impact head and neck biofidelity to each other and to postmortem human surrogate (PMHS) data to evaluate the usefulness of the THOR in rear impact testing.
Methods: Both ATDs were scanned in a seated position on a rigid bench seat. A series of rear impact sled tests with the rigid bench seat with no head restraint support were conducted with a HIII-50M at 16 and 24 kph. Tests at each speed were performed twice with the THOR-50M to allow an assessment of the repeatability of the THOR-50M. A comparison of the test results from THOR-50M testing were made to the results of a previous study that included PMHS. Rear impact sled tests with both ATDs in a modern seat were then conducted at 40 kph.
Results: The THOR-50M head was 48.4 mm rearward and 60.1 mm higher than the HIII-50M head when seated in the rigid bench seat. In the repeated rigid bench testing at 16 and 24 kph, the THOR-50M head longitudinal and vertical accelerations, upper neck moment, and overall kinematics showed good test-to-test repeatability. In the rigid bench tests, the THOR-50M neck experienced flexion prior to extension in the 16 kph tests, where the neck of the HIII only experienced extension. At 24 kph both ATDs only experienced extension. The THOR-50M head displaced more rearward at both test velocities. The rigid bench tests show that the THOR-50M neck allows for more extension motion or articulation than the HIII-50M neck. The rigid bench test also shows that the head longitudinal and vertical accelerations, angular head kinematics, and upper neck moments were reasonably comparable between the ATDs. The THOR-50M results were closer to the average of the PMHS results than the HIII-50-M results, with the exception of the upper neck. In the 40 kph tests, with a modern seat design, the THOR-50M resulted in more deformation of the seatback with greater head restraint loading than the HIII-50M. The THOR-50M head backset distance was less.
Conclusion: This study provides insight into the differences and similarities between the THOR and the HIII-50M ATD geometries, instrumentation responses, and kinematics, as well as the repeatability of the THOR-50M in rear impacts testing. The overall geometries of the THOR-50M and the HIII-50M are similar. The seated head position of the THOR-50M is slightly further rearward and higher than the HIII-50M. The results indicate that the THOR-50M matches the PMHS results more closely than the HIII-50M and may have improved neck biofidelity in rear impact testing. The results indicate that the studied THOR-50M responses are repeatable within expected test-to-test variations in rear impacts. Early data suggest that the THOR-50M can be used in rear impact testing, though a more complete understanding of the THOR-50M differences to the HIII ATDs will allow for better correlation to the existing body of HIII rear impact testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15389588.2023.2179370 | DOI Listing |
J Clin Med
December 2024
Clinic for Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, 8006 Zurich, Switzerland.
: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Health, University of Canterbury, Christchurch, Canterbury, New Zealand.
The incidence of head impacts in rugby has been a growing concern for player safety. While rugby headgear shows potential to mitigate head impact intensity during laboratory simulations, evaluating its on-field effectiveness is challenging. Current rugby-specific laboratory testing methods may not represent on-field conditions.
View Article and Find Full Text PDFInt J Sports Physiol Perform
December 2024
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland.
Purpose: To investigate the physiological characteristics of freestyle snowboard and freeski athletes and explore potential differences between males and females.
Methods: National-team athletes, snowboard (9 males, 21 [2.3] y; 8 females, 20 [4.
Front Sports Act Living
December 2024
MARCS Institute, Western Sydney University, Sydney, NSW, Australia.
Athletes in Martial Arts must anticipate the target of their opponent's kick or strike to avoid contact. Findings suggest that features, e.g.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Sichuan Basalt Fiber New Material Research Institute, Guang'an 638500, China.
With the growth in road transport volume and increasingly stringent environmental regulations, the use of lightweight dump trucks not only reduces fuel consumption but also enhances transport efficiency, aligning with the principles of green development. It has now become a key focus in the field of heavy-duty vehicle research. The carriage is located at the rear of the dump truck, connected to the chassis, and serves as the box for carrying cargo, making its strength and durability crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!