Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three-dimensional (3D) bioprinting is an emerging manufacturing technology to print materials with cells for tissue engineering applications. In this study, we prepared novel ternary soft segment-based biodegradable polyurethane (tPU) using waterborne processes. The ternary soft segment included poly(ε-caprolactone) (PCL), polylactide, and poly(3-hydroxybutyrate) (PHB). tPU2 with a soft segment of PCL, poly(D,L-lactide), and PHB in a molar ratio of 0.7 : 0.2 : 0.1 demonstrated lower stiffness (∼2.3 kPa) and a greater tan value (∼0.64) and maintained good vitality (91.3%) of neural stem cells (NSCs) among various tPUs. The bioprinted tPU2 constructs facilitated cell proliferation (∼200% in 7 days) and neural differentiation of NSCs. Meanwhile, tPU2 formed double network composite hydrogels with gelatin or agarose, and the composite hydrogels showed good biocompatibility and achieved high-resolution (∼80 μm nozzle) bioprinting. In addition, a new series of double network polyurethane-chitosan composite (PUC) hydrogels were developed by combining tPU2 with a self-healing chitosan hydrogel. The PUC hydrogel demonstrated self-healing properties and bioprintability without the need for a post-crosslinking process. The bioprinted PUC composite hydrogel promoted cell proliferation (∼300% in 7 days) and neural differentiation of NSCs better than the tPU2 bioink. This study revealed new formulae of a polyurethane bioink and a polyurethane-chitosan composite bioink for 3D bioprinting and tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb00120b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!