Bone tissue engineering deals with the design of bone scaffolds. The selection of porous scaffold for osteoblast attachment and suppression of microbial infections are the major challenges that were addressed by designing gelatin scaffolds conjugated with gymnemic acid. Gelatin scaffold was prepared by loading gymnemic acid and morphological characterization, porosity, water absorption behavior, and biocompatibility of the scaffold were studied. The scaffold was introduced to the rat calvarial bone defect (BD) and analyzed the serum C reactive protein, alkaline phosphatase activity, and histology for 1 month to study the reconstruction. Adult Sprague-Dawley rats were used as sham operated control, animal with BD, and animal with BD which was implanted with scaffold (BDMB). The scanning electron micrograph revealed porous nature of scaffold. There was no significant difference in water absorption ability of scaffold. The C reactive protein was not observed in the serum collected on the 5th day postsurgery, supported the biocompatibility. The alkaline phosphatase activity in BDMB was increased when compared with BD on 15th and 20th day and then decreased. New bone tissue formation was detected with hematoxylin-eosin staining. The scaffold is effective in enhancing bone regeneration, which will have therapeutic significance in orthopedics and dentistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.2463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!